
Why, where, how JavaFX makes sense!
by Björn Müller, http://www.CaptainCasa.com

CaptainCasa is an open community of mid-range business application software vendors –
using and developing one common frontend infrastructure for their business applications –
the CaptainCasa Enterprise Client.

The characteristics of business applications are:

• “Big.” - Mannny screens.

• “Complex.” - A lot of rules driving the application processing.

• “Used by employees.” - The core users of the application are employees, using the
application as part of their daily work. Of course there always are other users
(occasional users, anonymous users) as well – but these are not the core ones.

• “Long term oriented.” - The life cycle of an application is lonnnng. Example: The
application is developed today, is sold for the next 7 years, and runs at customer site
longer than 10 years. This is a life cycle of 17 years to be taken into consideration!

Companies using CaptainCasa provide software solutions in the area of: financials,
controlling, logistics, manufacturing, human resources, administration and others.

The CaptainCasa community was founded in 2007 and – at this point of time! -decided to
use a Swing-based implementation for its client. We are just moving over to JavaFX – and
this is what this document is about.

Everything in HTML5! - Or is there still a Window open for
native Frontends?

Should you follow Hypes?
In 2007 everyone told us: “you are stupid not to use Adobe Flex!”. At developer
conferences the Adobe sessions were overcrowded. ...it took some time and it took one
mail from Steve Jobs to end this hype.

One year ago Google Web Toolkit was a hype. Now Google told the world that it will
concentrate on Dart as new language for the dynamic web! So, the next hype is on its
way...

Be careful with hypes in the area of frontends – they just change too often!

W
eb

 U
I H

yp
es

Bu
s.

 A
pp

lic
at

io
n

Li
fe

 c
yc

le

1

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

http://www.CaptainCasa.com/

Of course “managers” always want to be on the hype side of life! “Everything must be
HTML5” - how many times did I hear this clear and simple sentence, exactly knowing that
the person behind does not even know what HTML5 really is... ;-)

You must not exclude yourself from hypes, not at all! You should ride on hypes, when and
where it makes sense: you need HTML screens for a lot of scenarios, you need native Apps
for other scenarios. So your architecture must be open enough to include any of these
technologies in an efficient way.

But: you must not decide on core aspects of your application architecture just by
following today's hype! The life cycle of your business application will definitely be longer
than the life cycle of today's hype. You will not have the budget to adapt the core screens
of your application every 5 years. And you will not have the customers to be amazed
about you exchanging core parts of your application frequently...

Once again: there are technical Problems!
JavaScript, HTML5 and CSS – this is what HTML5 pages are made off. And any developer
can iterate the problems associated, even when waking him/her up in the mid of the
night:

• Ugly language.

• Browser incompatibilities.

• Performance issues.

The situation on the one hand is getting even worse today:

• The number of browsers is increasing: IE, Firefox, Chrome, Safari on desktop systems.
And their “partners” on the tablet and phone systems – which are decoupled
implementations, everyone with its own “features”.

• The task what can be done with JavaScript is more and more extended: it's not a
language anymore to knit together some UI processing, but it targets to be a language
for general client development purposes, e.g. with having access to the local file
system etc.

On the other hand: There seems to be a way out - you need some framework to help you.
Some framework, covering all the complexity or at least helping you to manage the
complexity. Due to the complexity mentioned, these frameworks are complex as well.

There are mannnnny frameworks! Some of them are a hype today, some were the hype of
yesterday and some will be the hype of tomorrow. And many of them will disappear or go
the open source way – when the people behind stop development and maintenance.

What do you do if something does not work in the frontend of your application? E.g. there
is a bug that only occurs with Firefox, not with IE – or vice versa? Then you have to be in
very close contact with the framework guys...!
You are the application provider for your customer! So your customer will ask you for a
solution. You will be the guilty one, you have to provide a solution!

Is “Zero Installation” the only efficient Type of Installation?
There are two options when it comes to implementing frontends:

• You go the HTML way – either by restricting yourself to a certain frontend complexity or
by coping with the complexity – with or without framework to support you. Then you
have to fight with the problems and complexity involved in going this way, you have to
pre-reserve corresponding development and maintenance resources.
(...BTW: what typically does not work at all is to dictate the browser - “we only run on

2

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Firefox”. Companies have browser standards that you have to follow, full stop.)

Or:

• You deliver sophisticated application frontends as easily installable programs (now
called “Apps”) that are running natively in the client operating system.

Both approaches have proven to work and have proven to be efficient:

• There is enough HTML(5) out in the world on the one hand! So, yes, we are in the era of
HTML, of course.

• But it's also the era of installing native applications in a massive way. On mobile and
table devices the loading and installing of apps is just a normal procedure – not to
mention all the “old-fashioned” installations on desktop computers as well.

Be sceptical, if you get told that HTML is the only way of efficiently bringing functions to
the user. It's just not true – thousands of apps and millions of installations per day prove
that there is a valid second way as well!

Luckily, Java (FX) is moving into the right direction here: providing the possibility to
deliver Java-programs as self containing bundles (should we call them “Java-Apps”?), that
run from the scratch on the user's desktop, that do not require any pre-installation and
that do require e.g. administrator rights to be executed.

Conclusion from Business Application Point of View
When it comes to the CaptainCasa community then the conclusion is:

The typical screens for employee users are the complex ones: much data on the screen,
many ways of interaction (keyboard, mouse, right mouse button, shortcuts, ...), close
integration to the desktop environment (file management, MS Office, ...) and sometimes
also with direct integration of subdevices (scanners, card readers...). These screens
typically form the core of the application and there is a high expectation, that they are
part of the application during its whole life cycle. The screens must run reliably on
customer site – with a minimum of dependency from the user's client system.

• For these screens the local installation of native client apps makes more than sense!

There are the screens for for anonymous users, where zero installation is a must. Most of
these screens are quite simple ones (but styled in a nice way, of course!). The life cycle
of these screens typically is much shorter compared to the core screens, because they are
often designed for a certain usage scenario.

• Here of course HTML5 makes more than sense. You drive the complexity of the screens,
so you know what effort to spend in the areas of browser compatibility etc.

So, we believe that choosing the right framework for the right category of user interfaces
is essential – instead of drilling down one framework to be used for all. Of course we
dream about one framework to cover all aspects, too – but we just currently do not find
one. - And, we believe that it's a good idea to share as much as possible and reasonable if
using two frameworks...

Everything is possible! - But what is the Cost?
...typical question: “Is there any functional restriction when using HTML(5) as frontend
environment?”. People asking this question hoping to get a technical answer like:
“because of this and that technical reason, HTML(5) cannot be used”. Managers want to
have some simple proof, that going a non-HTML way for certain screens is the only option.

The clear answer is: “(Nearly) everything can be done with HTML5!” - It's just a question
of cost and efficiency!

3

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Typical business application development groups are not too big. Aside the very big ones
(SAP, ...) there are many midrange companies and groups, with limited development
resources. So efficiency is inevitable. This means:

• Homogenous development tools and development languages.

• Long-term-reliability of frameworks.

• Minimum of surprises and different runtime scenarios on customers' client site.

• Ability to debug, log, profile.

For small development groups you should think twice if the complexity of developing
employee screens with HTML is the most efficient strategy. Or if it makes sense, to
depend from a framework that will very likely not cover the life cycle of your application.
- You should think twice and check, if the “App-way” may be the more efficient way to
make your frontends work on client site.

JavaFX for Employee Screens!

Reasons for choosing JavaFX
We found out, that it's a very valid way to implement the employee's desktop frontend
with some native technology. And of course JavaFX is a good fit:

• It's available on the leading desktop operating systems (Win, Linux, Mac)

• It has some painful history, but also a history that is proving a certain commitment of
the company behind!

• It is and will be used by mannnny Java developers – as the successor of Swing. So
regardless what will happen and if it will once a day be a super-hype or not: there will
be a strong community of users.

• It provides a clear and clean architecture – with many enhancements compared to
Swing – styling, event management, transitions, scene graph, ...

• It provides the possibility to develop up-to-date user interfaces: with animations, with
multi touch, ...

• It is based on a clear and clean language – Java.

• It provides all the professional Java tooling that you require to debug, analyze, profile,
log your client.

• It (now) enables simple, “App-like” installation on client side, without any
prerequisites.

Indeed it's from our perspective the only native UI environment today that provides all
these features.

Experiences with JavaFX
Since mid of 2012 we are developing with JavaFX. Our experiences are:

• Stability – We did not stumble over severe issues. We believe that the way we assemble
our controls is a quite sophisticated one, so it's much more than some trivial screens,
what we pass to JavaFX. Our overall message is “It's stable!”. - We currently focused on
Windows as client platform, we do not have experiences with MacOS or Linux.

• Standard Control Library - ...is sufficient for us. Biggest win when compared to Swing:
the browser component and the editor component. We are used to implement complex

4

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

controls on our owns, so the extensibility is very important for us. - The only severe
issue we are waiting for...: the possibility to use HTML-formatted text for all standard
controls (announced for version 3).

• Extensibility - ...building custom controls is no problem at all!

• Environmental Libraries - ...we were used to using some “big components” with Swing,
which are not available in FX yet. E.g. the “PDF Renderer” and “Open Street Map
Viewer” from the former Swinglabs, or the “SVG Viewer” from the Apache-Batik
project. Here we have to check each “big component” how to provide some adequate
function via JavaFX.

• Development Process - ...we use Eclipse, we ourselves do not use tools for building
screens and as consequence do not miss them. All professional tooling (debugger,
memory and performance profiler, ...) are available as part of the normal Java tool
stack.

• Performance - The overall impression is: same level as Swing (which is a good one!)
when it comes to assembling and rendering screens with many components. Much
better performance in the area of transition and animation (well: here Swing only
provided very limited functions...). Overall: performance is “no issue” yet, because it's
just fast enough...

• Support - you ask a question in OTN (Oracle Technology Network), you receive an
answer, often after some hours only. You post a bug in Jira, and the bug is processed.
Wow!

So: the overall impression is very positive.

The Architecture around JavaFX
Having chosen JavaFX as UI technology environment for employee screen, we come back
to have a look onto the architectural context in which the JavaFX UI is embedded.

The essential question is: how fat or how thin is your client?

(Please note: there is confusion about the terms “fat”, “thin”, “rich”, “smart” client, so
we explain what we mean...)

...fat Client Architecture
A fat client is one that not only is responsible for UI issues. It also holds a quite nice
amount of application logic. In technical terms: events and data input from the user
interface are directly (pre-)processed in application functions on client side. From time to
time the client may communicate to some server, calling certain APIs e.g. in order to pass
data that was input.

5

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

JavaFX
based UI

Application
Interaction Logic

Client side
(Pre-) Business Logic

JavaFX
based UI

Application
Interaction Logic

Client side
(Pre-) Business Logic

Business Logic

APIs

Fr
on

te
nd

Se
rv

er

Scenarios in which a “fat client” makes sense are:

• You want the user to operate locally on the desktop with a minimum of communication
to the server. You may even want the user to work independent from any network.

• You are working in scenarios in which you expect such many users, that you need to
define your server as stateless server – all interaction and processing state is to be kept
on client side.

JavaFX is a perfect environment for developing such fat desktop clients: you have all the
control processing through JavaFX and you have all the application processing through
Java. - Compare to HTML5, where you have HTML, CSS and JavaScript for doing the same
task!

But a “fat client” also involves negative issues:

• There is application logic in the frontend... so it will be a quite big frontend in case you
have a big application - and it will be rolled out quite frequently in order to fix bugs
within its logic.

• There is a high number of server APIs (e.g. web services) that needs to be defined in
order to fit to the frontend needs. And there is a high complexity in calling these server
APIs in an efficient way – e.g. avoiding the re-reading of certain master data...

• Typically there is some client application logic and there is some corresponding server
application logic behind the server APIs. And both have to fit to one another, sometimes
resulting in double-implementations of the same logic both on client and on server
side.

Typically the “fat client” approach is valid for simple scenarios. - Example: if you want to
implement a mail client as JavaFX application, then there are only some few interfaces to
read and send mails – and the logic involved is quite clear, too...

The fat client approach it too complex when coming to business applications with
hundreds of screens. Imagine the client of an SAP business application to be implemented
as fat client...

...thin Client Architecture
So, the way to get out is the thin client. In this type of architecture, the client is a pure
rendering engine – receiving some abstract form from the server (e.g. as XML description),
rendering this form (via JavaFX components) and passing back user input at the correct
point of time back to the server processing.

6

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

JavaFX based
Rendering Engine

Application
Interaction Logic

Business Logic

„Server Side UI“

Data, Events LayoutData, Events

Fr
on

te
nd

Se
rv

er
In this scenario the server is the one to build up the form (XML) and to process user input.
The interaction logic of an application, this means the business processing of the form
takes place on server side. - The client does not know any business semantics behind the
form it renders: if a form represents a purchase order or a form represents a vacation
request... - the client does not know about.

The thin client architecture of course means that you need some infrastructure:

• You need the rendering client on client side

• You need the server infrastructure sending the form/layout and processing the user
input that is sent from the client

• You need some protocol in between that is smart e.g. not always sending the whole
layout as with HTML, but only sending changes.

But if you have this infrastructure then the advantages are:

• The client is independent from the application processing: application bugs need to be
fixed on server side only. There is no constant redistribution of the client.

• The client size is small – and independent from the size of the application.

• There is only one interface between the client and the server – the layout channel.
There is no need to publish a high number of detailed server APIs to be accessed by
client side logic.

• The interaction processing (now on server side!) is very close to the server side
application.

• There is only one single place of development – the server side. All coding is done on
server side. There is no separation of the development team into “the frontend guys”
and the “server guys”.

Conclusion
The choice of the correct architecture is essential.

The “fat approach” is the one you get in fastest – you just take JavaFX and start! But it
has limitations when it comes to more complex scenarios.

The “thin approach” is suitable for business applications, that in general tend to have a
certain size and complexity. For business applications,it both significantly increases the
efficiency of development and decreases the cost of operation at runtime.

7

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

JavaFX in front of JSF – ...CaptainCasa!
When going the thin way, you have the option to either develop a client framework on
your own or to use an existing infrastructure.

CaptainCasa is an existing thin client infrastructure, that provides a Java based client on
client side and a JSF based processing on server side.

Java Server Faces (JSF) now being used for a JavaFX Client
“JavaFX with JSF” - this may first sound a bit strange, because JSF is known as HTML
infrastructure. But: it is a J2EE server standard that from the beginning on was abstracted
from the concrete HTML browser client – in order to support other rendering
infrastructures as well. So it's a perfect fit!

JSF is a server side interaction framework. Its basic processing is:

• On server side a layout is kept as object tree of components. The tree is built up
typically be some declarative XML but can be manipulated in any way at runtime.

• The server sends the layout to the client by recursively walking through the tree. Each
component of the tree renders its content into some string using a certain format. In
case of HTML each component is rendering its corresponding HTML representation. The
result of walking through the tree is concatenated to form one layout description, that
is sent to the client side.
In case of CaptainCasa Enterprise Client each component renders itself into a specific
XML statement. During rendering there is a delta processing so that the XML page at the
end just holds this part of the component tree which really has changed.

• The JavaFX client now receives the XML and renders it. And again, the delta
management ensures that not the whole layout is rendered, but that only these parts
are updated that have changed.

• The user now does some input. The client registers changes (e.g. input into a field) and
waits for significant events to send all changes to the server. An event could be the
pressing of a button, or the selection of a menu item. Or it could be the user having
changed a certain field.

• The server receives the request and passes all the changes into the corresponding
components of the JSF component tree, where they are transferred into the application
processing.

You see, JSF is used just the normal way, but now serving a JavaFX rendering client - and
not the browser as in default scenarios. From network perspective there is no structural
difference between a CaptainCasa JavaFX client and a normal browser – just instead of
HTML being sent over the line, now a certain XML is sent.

XML Layout is (and must be!) abstracted from Client Rendering
Infrastructure
We started our client in 2007 using Java Swing. We provide about 100 controls that can be
added into forms. Now we re-implement(ed) our client in JavaFX .

All this is done based on an XML layout definition that from the beginning on was
abstracted from Swing. As consequence the JavaFX client is using the same layout
description as the Swing client: both are compatible.

This is from our point of view a core issue of the architecture:

• On server side your interaction is working with a stable set of server side controls (JSF
components) that is independent from any client side rendering technology.

8

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

• As consequence existing users of CaptainCasa can very fast switch from their current
Swing client to the JavaFX client.

In short words: the exchange of a rendering technology on client side must not have any
(severe) consequences or reimplementation effort on the server side.

The first screen shot shows a certain page rendered with our Java Swing based client, the
second one is rendered with the JavaFX based client. Yes, there are differences in colors
and edges etc. - but this due to a different styling being applied to the screens. - The
behavior of the client against the server side processing is one and the same.

Summary
JavaxFX or HTML5? - Our clear response is: JavaFX for employee desktop screens and
HTML5 for simple(r) scenarios and anonymous usage scenarios.

JavaFX status? - We do not have too many problems and are really satisfied.

Architecture around JavaFX? - Simple scenarios: jumpstart with directly implementing
JavaFX. Business Application scenarios: use or define a thin client architecture!

JavaFX and JSF? - Fits very well: a thin client based on JavaFX standards, a server being
based on J2EE standards!

CaptainCasa? - ...is “JavaFX on JSF” to be used for the employee frontends of business
applications.

9

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

	Why, where, how JavaFX makes sense!
	Everything in HTML5! - Or is there still a Window open for native Frontends?
	Should you follow Hypes?
	Once again: there are technical Problems!
	Is “Zero Installation” the only efficient Type of Installation?
	Conclusion from Business Application Point of View
	Everything is possible! - But what is the Cost?

	JavaFX for Employee Screens!
	Reasons for choosing JavaFX
	Experiences with JavaFX

	The Architecture around JavaFX
	...fat Client Architecture
	...thin Client Architecture
	Conclusion

	JavaFX in front of JSF – ...CaptainCasa!
	Java Server Faces (JSF) now being used for a JavaFX Client
	XML Layout is (and must be!) abstracted from Client Rendering Infrastructure

	Summary

