In a Nutshell

CaptainCasa Enteprise Client - In a Nutshell

CaptainCasa Enterprise Client is a rich client solution that meets the requirements of
typical business applications:

* Many dialogs

* Complex, server side business logic

* Heavily used by employees to constantly support them doing their job
* Long term life cycle - developed, sold and used for many years

CaptainCasa Enterprise is based on Java standards (JavaFX, Java Server Faces in the
backend) following a server-centric frontend architecture.

Cac[ainCaSa DefMo Workplace

L |

Components
Containers
Grids 8. Trees

Grids and Trees
= Simple Grid

DemoWorkplace |~

‘Grid with Details

Demo Layout XML Sewver side Java Code 853
| |

New Functions

Select one of the following items by double-click. Select oreiem om the artide Rt

s i of BearOhect Article Id Aticle Text Unit of Measu... Stock Area Supplier || | either by double clicking or by
Bt hiDe toky 32481 Text for artide 32481 pe Front 28587 pevgatog it the keyboord and
© Header and Footer e SO i = s, pressing Enter. Result: the details of
- Hide empty rows S g <= the item will be shown below the grid.
v *SerollAtiaation 88676 Text for article 88676 pc Front 15641
Inthe implementation of th !
- Row Height Definitions 53346 Text for artidle 53346 kg Back 31869 n the Irjﬁp lementation of the example
3 e 197362 Text for article 197362 pe Front 56036 you see:
b e 51063 Text for article 51063 kg Back 142428) By i e e SeRmaeentel)
* Double line grid 26826 Text for article 26826 Pe Front 76562 method you can add server side
+ Complex Columns 183363 Text for article 183363 kg Back 85379 coding, which is executed when the
I Grid Row Selector 53809 Text for article 53809 pec Front 166752 user double-clicks a row. (There is a
+ Horizontal Scrolling 116318 Text for artide 116318 kg Back 141082 cottespanding onEonSelect() method
& sColiva Sting by Cietert T 121 | whichis executed when the user
double clicks the gri, as well)
Tree
- n

* Simple Tree d |52309 | Location Quantity ™| | (}Inside the grid column fields, znd

= Tree with checkbox Description | Text for article 53808 | Loc-143 7 inside the detail fields the business

= Tree with smart text Ir = |Loc-345 886 object (Article, Stock) coming from

+ Explicit Status Image Dot MeasurE] pe J |loc96 853 the logic layer is simply referenced.

* Select vs. Toggle Supplier | 166752 | [Loc-173 513 T'_‘;"? ‘:h“ﬂ 'Eje""""h'_’fcl:'ﬂpe’t'ﬂ

; o . within the grid row objects.
@ {Roiwpositaning Stock Area | Front | |Loc-194 87
= Grid Popup Me_nu - Loc-376 388 () The detail area is only rendered
o i Loc-356 740 when a selected article is available.
b Selection Issues e o This is defines within the layout
I+ Serting 103 definition of the corresponding row
I Drag & Drop e > — holding the detail area.
* Load on Demand (1) 3 LocH)
= Loc-378 340 5
General

Add-ons

[Functions | Search | gy I Mini Spreadsheet Grid with Details

45(84) ms

CaptainCasa Demo Workplace

Frontend Technology

Today's hypes in the area of user interface development are dominated by HTML5 based
frameworks. While these frameworks in general significantly simplify the development of
web scenarios, they still fail to be an adequate technology solution meeting the
requirements of business applications:

» Browser incompatibilities and performance continue to be a constant problem.

» Development efficiency in the web is still way behind expectations.

Web Ul Hypes

~ Life cycle

c
O
iy

]
=
=t

(=
<
;'.lt:_-'_:

YA

* The long term stability of frameworks still IS a problem. There's a constant coming and

going of frameworks and hypes.

All this means risk and cost for your long term oriented application development. And all
this means that many applications are still stuck with Ul technology coming from the
“late 90s” (C++, VB, Java Swing, Delphi) that more and more fail to meet the usability

requirements of modern frontends.

JavaFX - the Java standard in the are of Ul processing - is an up to date Ul technology
that meets these requirements and that provides the long term stability expected by you
and your customers.

The client side of CaptainCasa Enterprise Client is based on JavaFX as consequence.

Frontend Architecture

The core architectural question when defining a frontend architecture is, if you should
follow a “client-centric” or a “server-centric” approach.

I
!

APIs

ul

Application
Interaction Logic

Client side
(Pre-) Business Logic

Business Logic

Client-centric

In the client centric architecture your
development is split between a frontend part
(developed by frontend developers) and a backend
part (developed by backend developers). A couple
of APIs are defined by the backend side that are
accessed from the Ul processing of the frontend.

While being an adequate architecture for smaller
projects, the client centric programming comes
with significant disadvantages for bigger
applications:

* The efficiency of development lacks because of
having a split between frontend and backend
development.

* The number of APIs is growing and growing. The

client Ul logic tends to require very specific, fine granular APIs in order to provide a
responsive user interface.

* Many APIs automatically mean potencial security and potential roundtrip problems.

* There is the “real” logic on server side and some “pre”-logic on client side, which
always have to be in sync.

» The size of the client is growing with a growing size of the application.

Many application developments start with the client centric approach because it's the
easiest to start with - and because of not having thought about the frontend architecture
too much. The result are client programs that were called “fat clients” in the 90s.

Server-centric
The server centric approach requires some more framework background.

Here a generic client serves as some kind of “form
processor”: it receives some form definition from
Rendering Engine the server side form processing and outputs the
form onto the user's screen. The user processes
the screen (e.g. performs some data input). On
certain events (e.g. button pressed) the updated
form data is sent back to the server processing.
Data, Eventsi T Layout On server side the data changes and the event are
processed, the form is updated and sent back to
the client side.

In the server centric approach all logical form
processing is on server side - while the client is a
Application “stupid” rendering engine. The client does not

»derver Side UI“

(] Interaction Logic know what the business content of a form really
% is, but just know the arrangement of components
v and the data contained in the components.
Business Logic The advantages of the server centric architecture
are:

* The application development purely resides on
server side. There is no split up between development groups.

* There is only one interface between the frontend client and the backend: the “form
channel”.

» There is no exposing of fine granular business APIs by the server.
» There is a guaranteed one-roundtrip-behavior between client and server.

* The size of the client is stable - and independent from the number of forms to be
processed. There is no need to constantly roll out the client (e.g. due to application
bug fixes), bug fixes are on server side.

CaptainCasa Enterprsie Client

Server-centric Architecture!

CaptainCasa Enterprise Client follows the server centric frontend architecture. The client
part is a generic frontend based on JavaFX, the server side is built on top of the Java
Server Faces (J2EE-JSF) framework. The client talks to the server via http(s), only
changes are transferred between client and server (“lightweight roundtrips”).

Java Server Faces is optimally suited

Tra e to serve as Java standard for the

Client backend processing. It allows the

Renderer definition of descriptive layout

definitions on the one hand and the

ry direct manipulation of forms at

e | — runtime on the other hand. It provides

axmy | P pns strong concepts in the area of binding

¥ the form data and functions to server

Servlet/J2EE-Server side bean processing.

JSF based

Interaction Java Server Faces does not imply any

Processing further server side frameworks, but is

open to adapt to any type of server

- . side business logic processing.
Application Processing Frameworks like Spring, Hibernate,
Enterprise Java Beans can be used.

CaptainCasa on the one hand uses Java Server Faces, on the other hand completely hides
it behind its tools. There is no need at all to learn JSF before starting to develop with
CaptainCasa - developers implicitly work on JSF without knowing.

Component Library

CaptainCasa Enterprise Client comes with a huge set of standard components, that are
directly and flexibly usable in application forms:

» Basic components: field, combo box, button, icon, ...

* Grid components: simple and complex grids, trees, dynamic rows, optimized loading of
items

» Container components: pane, tab pane, titled pane, ...
» Graphics components: chart, svg, ...

* Drag&Drop, right mouse button menu, tooltips, online help, internationalization
consistently supported through all components.

The component library is extensible by adding own components - both composite
components and completely new components.

Programming Model

Programming Enterprise Client is completely done on server side. Forms are descriptively
defined in XML layouts. Forms are bound to Java beans, which themselves may connect
any business logic below.

Example: the following dialog is built using CaptainCasa Enterprise Client:

JavaFX in front of JSF
Second Tab

Your Mame JavaFX
Hella
Result Hello World, JavaFX!

The server side layout definition is an XML definition:

<t:rowtitlebar text="JavaFX in front of JSF" />
<t:rowbodypane>
<t:row id="g_3">
<t:tabbedpane width="100%">
<t:tabbedpanetab padding="20"
rowdistance="5"
text="First Tab">
<t:row>
<t:label text="Your Name"
width="100" />
<t:field
text="#{DemoHelToworld.namel}"
width="200" />
</t:row>
<t:row>
<t:coldistance
width="100" />
<t:button
actionListener="#{DemoHelToworld.onHelTlo}"
text="Hello" />
</t:row>
<t:rowdistance height="20" />
<t:row>
<t:label text="Result"
width="100" />
<t:field enabled="false"
text="#{DemoHelloworld.output}"
width="100%" />
</t:row>
</t:tabbedpanetab>
<t:tabbedpanetab
text="Second Tab" />
</t:tabbedpane>
</t:row>
</t:rowbodypane>

The attributes of components either are directly defined or are bound by using an
expression. The expression points into a server side bean processing:

package demo;

import javax.faces.event.ActionEvent;

public class DemoHelloworld

String m_name;
String m_output;

public void setName(String value)
m_name = value;
Eub1ic String getName()

return m_name;

3
public String getoutput()

return m_output;

public void onHello(ActionEvent ae)

if (m_name == null)
m_output = "No name set.";
else
m_output = "Hello world,
"+m_name+"!";

At runtime the dialog is loaded on server side, the components pick their data via
expressions from the bean processing. A corresponding XML definition is sent to the client.

On client side the user keys in his/her name - when pressing the “Hello” button all data
changes are sent to the server side.

On Server side the data changes are passed into the bean processing and the event
associated with the button is called. As part of the event processing properties are
changed.

After event execution the form data is recollected - finding out that some properties (e.g.
“output” in the example) have changed. A corresponding delta-XML-definition is sent to
client side and their updates corresponding components.

Tools

CaptainCasa Layout Editor Toolset

Project w Jatest/ - Bean Browser

Project Documentation About Filter... Editor's Lo
- File Edit Tools Save % Refresh Preview Preview.. Run... % Reload Server [: -
=4
s yomm - ot s R s M) . P . R -5 i LB = Tes347 Test347
o T m Important [> ® actualRootExpressi... String
- = > = class Class
peemn 3.0 20140128 2 =] trowbadypane | Height 100 -
— @ height int
et r
P—— o o, Foldable Pane 3 e -
e b i 5 pageName String
B 35 > [Htcombobox /w100 b (= popups Map
£ 036jsp iiit:r.ow @ rootExpressionUse... String
) a374sp FIEE T ot L b= TesB37 Test37
— il trow
] a38jsp < b 1 Test38 Test38
i o39izp b =) Test39 Test3g
] a10js
= MJ P > (7 Testd0 Testd0
Tl a4jsp
£ a2iep b () Testdl Testd1
[ai3jsp 2 b 1T Testd3 Testd3
= £
] at4jsp £ b () Testa7 Testd? i
- 3
etsisp k- I b =) TestS0UI TestS0UT
1] a46.jsp 2 =
e L b () TestS1 Tests1
] a47jsp
o i P TestS6 TestS6
£l a89jsp b TestsT TestST
] a50,jsp = b7 Testss Tests8
R, s o b) Testbd Tests0
Template RICH - straightjsp . T w 7 _4 Style & Macro ilesto? Bl
5 landatory attributes: actionListen... tcombo.. g e = [Tt T
text: #{d.Test347.heighe} Ref b
e eference Kpression
s #{dTest347)

CaptainCasa Layout Editor

CaptainCasa comes with a set of tools, including:
* WYSIWYG (what you see is what you get) Layout Editor
* Bean code generator

* |Internationalization/Translation tools

Profiling tools

The actual Java development is done within an IDE of your choice (e.g. Eclipse, Netbeans,
etc.).

CaptainCasa Community Concept

User interfaces are a constant area of changes and improvements:

New components
New designs

New ways of interaction

On the one hand this needs to be technically reflected by a solid and open architecture.

On the other hand this needs to be reflected by an organization that quickly reacts when
it comes to improving the frontend framework accordingly.

CaptainCasa is a corporate community of independent software vendors, that are
commonly using and driving the CaptainCasa Enterprise Client. The framework is released
and updated regularly.

Advantages of using CaptainCasa Enterprise Client

Using CaptainCasa Enterprise Client includes the following advantages:

Your application’s frontend is built using long term oriented technology standards - to
be supported over the next decade(s).

The development of frontends is extremely efficient: there is only server side
development, there is no expertise on JavaFX and/or on Java Server Faces required.

The resulting frontends look modern, the look&feel can be easily adapted. Modern
aspects of frontends (animations, multi touch, ...) are covered.

The performance and stability of the client is high. There is no dependency to any
browser installation.

You are part of a community of professional software developers, joining their forces in
the area of frontend architecture.

Licensing CaptainCasa starts with no-cost licenses (without restrictions but of course
without warranty and without service) and reaches up to priced licenses (with warranty,
with defined services, with code ownership).

Please set up contact to CaptainCasa by writing a mail to info@CaptainCasa.com.

CaptainCasa GmbH

Hindemithweg 13
D - 69245 Bammental

06223 484147

http://www.CaptainCasa.com
info@CaptainCasa.com

mailto:info@CaptainCasa.com
http://www.CaptainCasa.com/

	CaptainCasa Enteprise Client – In a Nutshell
	Frontend Technology
	Frontend Architecture
	Client-centric
	Server-centric

	CaptainCasa Enterprsie Client
	Server-centric Architecture!
	Component Library
	Programming Model
	
	Tools

	CaptainCasa Community Concept
	Advantages of using CaptainCasa Enterprise Client

