
CaptainCasa

Enterprise Client

In a Nutshell

1

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

CaptainCasa Enteprise Client – In a Nutshell

CaptainCasa Enterprise Client is a rich client solution that meets the requirements of
typical business applications:

• Many dialogs

• Complex, server side business logic

• Heavily used by employees to constantly support them doing their job

• Long term life cycle – developed, sold and used for many years

CaptainCasa Enterprise is based on Java standards (JavaFX, Java Server Faces in the
backend) following a server-centric frontend architecture.

CaptainCasa Demo Workplace

Frontend Technology
Today's hypes in the area of user interface development are dominated by HTML5 based
frameworks. While these frameworks in general significantly simplify the development of
web scenarios, they still fail to be an adequate technology solution meeting the
requirements of business applications:

• Browser incompatibilities and performance continue to be a constant problem.

• Development efficiency in the web is still way behind expectations.

2

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

• The long term stability of frameworks still IS a problem. There's a constant coming and
going of frameworks and hypes.

All this means risk and cost for your long term oriented application development. And all
this means that many applications are still stuck with UI technology coming from the
“late 90s” (C++, VB, Java Swing, Delphi) that more and more fail to meet the usability
requirements of modern frontends.

JavaFX – the Java standard in the are of UI processing – is an up to date UI technology
that meets these requirements and that provides the long term stability expected by you
and your customers.

The client side of CaptainCasa Enterprise Client is based on JavaFX as consequence.

Frontend Architecture
The core architectural question when defining a frontend architecture is, if you should
follow a “client-centric” or a “server-centric” approach.

Client-centric
In the client centric architecture your
development is split between a frontend part
(developed by frontend developers) and a backend
part (developed by backend developers). A couple
of APIs are defined by the backend side that are
accessed from the UI processing of the frontend.

While being an adequate architecture for smaller
projects, the client centric programming comes
with significant disadvantages for bigger
applications:

• The efficiency of development lacks because of
having a split between frontend and backend
development.

• The number of APIs is growing and growing. The
client UI logic tends to require very specific, fine granular APIs in order to provide a
responsive user interface.

• Many APIs automatically mean potencial security and potential roundtrip problems.

3

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

JavaFX
based UI

Application
Interaction Logic

Client side
(Pre-) Business Logic

UI

Application
Interaction Logic

Client side
(Pre-) Business Logic

Business Logic

APIs

Fr
on

te
nd

Se
rv

er

• There is the “real” logic on server side and some “pre”-logic on client side, which
always have to be in sync.

• The size of the client is growing with a growing size of the application.

Many application developments start with the client centric approach because it's the
easiest to start with – and because of not having thought about the frontend architecture
too much. The result are client programs that were called “fat clients” in the 90s.

Server-centric
The server centric approach requires some more framework background.

Here a generic client serves as some kind of “form
processor”: it receives some form definition from
the server side form processing and outputs the
form onto the user's screen. The user processes
the screen (e.g. performs some data input). On
certain events (e.g. button pressed) the updated
form data is sent back to the server processing.
On server side the data changes and the event are
processed, the form is updated and sent back to
the client side.

In the server centric approach all logical form
processing is on server side – while the client is a
“stupid” rendering engine. The client does not
know what the business content of a form really
is, but just know the arrangement of components
and the data contained in the components.

The advantages of the server centric architecture
are:

• The application development purely resides on
server side. There is no split up between development groups.

• There is only one interface between the frontend client and the backend: the “form
channel”.

• There is no exposing of fine granular business APIs by the server.

• There is a guaranteed one-roundtrip-behavior between client and server.

• The size of the client is stable – and independent from the number of forms to be
processed. There is no need to constantly roll out the client (e.g. due to application
bug fixes), bug fixes are on server side.

CaptainCasa Enterprsie Client

Server-centric Architecture!
CaptainCasa Enterprise Client follows the server centric frontend architecture. The client
part is a generic frontend based on JavaFX, the server side is built on top of the Java
Server Faces (J2EE-JSF) framework. The client talks to the server via http(s), only
changes are transferred between client and server (“lightweight roundtrips”).

4

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Rendering Engine

Application
Interaction Logic

Business Logic

„Server Side UI“

Data, Events LayoutData, Events

Fr
on

te
n
d

Se
rv

e
r

Java Server Faces is optimally suited
to serve as Java standard for the
backend processing. It allows the
definition of descriptive layout
definitions on the one hand and the
direct manipulation of forms at
runtime on the other hand. It provides
strong concepts in the area of binding
the form data and functions to server
side bean processing.

Java Server Faces does not imply any
further server side frameworks, but is
open to adapt to any type of server
side business logic processing.
Frameworks like Spring, Hibernate,
Enterprise Java Beans can be used.

CaptainCasa on the one hand uses Java Server Faces, on the other hand completely hides
it behind its tools. There is no need at all to learn JSF before starting to develop with
CaptainCasa – developers implicitly work on JSF without knowing.

Component Library
CaptainCasa Enterprise Client comes with a huge set of standard components, that are
directly and flexibly usable in application forms:

• Basic components: field, combo box, button, icon, ...

• Grid components: simple and complex grids, trees, dynamic rows, optimized loading of
items

• Container components: pane, tab pane, titled pane, ...

• Graphics components: chart, svg, ...

• Drag&Drop, right mouse button menu, tooltips, online help, internationalization
consistently supported through all components.

The component library is extensible by adding own components – both composite
components and completely new components.

Programming Model
Programming Enterprise Client is completely done on server side. Forms are descriptively
defined in XML layouts. Forms are bound to Java beans, which themselves may connect
any business logic below.

Example: the following dialog is built using CaptainCasa Enterprise Client:

5

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

The server side layout definition is an XML definition:

<t:rowtitlebar text="JavaFX in front of JSF" />
<t:rowbodypane>
 <t:row id="g_3">
 <t:tabbedpane width="100%">
 <t:tabbedpanetab padding="20"
 rowdistance="5"
 text="First Tab">
 <t:row>
 <t:label text="Your Name"
 width="100" />
 <t:field
 text="#{DemoHelloWorld.name}"
 width="200" />
 </t:row>
 <t:row>
 <t:coldistance
 width="100" />
 <t:button
 actionListener="#{DemoHelloWorld.onHello}"
 text="Hello" />
 </t:row>
 <t:rowdistance height="20" />
 <t:row>
 <t:label text="Result"
 width="100" />
 <t:field enabled="false"
 text="#{DemoHelloWorld.output}"
 width="100%" />
 </t:row>
 </t:tabbedpanetab>
 <t:tabbedpanetab
 text="Second Tab" />
 </t:tabbedpane>
 </t:row>
</t:rowbodypane>

The attributes of components either are directly defined or are bound by using an
expression. The expression points into a server side bean processing:

package demo;

import javax.faces.event.ActionEvent;

public class DemoHelloWorld
{
 String m_name;
 String m_output;

 public void setName(String value)
 {
 m_name = value;
 }
 public String getName()
 {
 return m_name;

6

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

 }
 public String getOutput()
 {
 return m_output;
 }

 public void onHello(ActionEvent ae)
 {
 if (m_name == null)
 m_output = "No name set.";
 else
 m_output = "Hello World,
 "+m_name+"!";
 }

}

At runtime the dialog is loaded on server side, the components pick their data via
expressions from the bean processing. A corresponding XML definition is sent to the client.

On client side the user keys in his/her name – when pressing the “Hello” button all data
changes are sent to the server side.

On Server side the data changes are passed into the bean processing and the event
associated with the button is called. As part of the event processing properties are
changed.

After event execution the form data is recollected – finding out that some properties (e.g.
“output” in the example) have changed. A corresponding delta-XML-definition is sent to
client side and their updates corresponding components.

Tools

CaptainCasa Layout Editor

CaptainCasa comes with a set of tools, including:

• WYSIWYG (what you see is what you get) Layout Editor

• Bean code generator

• Internationalization/Translation tools

7

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

• Profiling tools

The actual Java development is done within an IDE of your choice (e.g. Eclipse, Netbeans,
etc.).

CaptainCasa Community Concept
User interfaces are a constant area of changes and improvements:

• New components

• New designs

• New ways of interaction

On the one hand this needs to be technically reflected by a solid and open architecture.

On the other hand this needs to be reflected by an organization that quickly reacts when
it comes to improving the frontend framework accordingly.

CaptainCasa is a corporate community of independent software vendors, that are
commonly using and driving the CaptainCasa Enterprise Client. The framework is released
and updated regularly.

Advantages of using CaptainCasa Enterprise Client
Using CaptainCasa Enterprise Client includes the following advantages:

• Your application's frontend is built using long term oriented technology standards – to
be supported over the next decade(s).

• The development of frontends is extremely efficient: there is only server side
development, there is no expertise on JavaFX and/or on Java Server Faces required.

• The resulting frontends look modern, the look&feel can be easily adapted. Modern
aspects of frontends (animations, multi touch, ...) are covered.

• The performance and stability of the client is high. There is no dependency to any
browser installation.

• You are part of a community of professional software developers, joining their forces in
the area of frontend architecture.

Licensing CaptainCasa starts with no-cost licenses (without restrictions but of course
without warranty and without service) and reaches up to priced licenses (with warranty,
with defined services, with code ownership).

Please set up contact to CaptainCasa by writing a mail to info@CaptainCasa.com.

CaptainCasa GmbH

Hindemithweg 13
D – 69245 Bammental

06223 484147

http://www.CaptainCasa.com
info@CaptainCasa.com

8

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

mailto:info@CaptainCasa.com
http://www.CaptainCasa.com/

	CaptainCasa Enteprise Client – In a Nutshell
	Frontend Technology
	Frontend Architecture
	Client-centric
	Server-centric

	CaptainCasa Enterprsie Client
	Server-centric Architecture!
	Component Library
	Programming Model
	
	Tools

	CaptainCasa Community Concept
	Advantages of using CaptainCasa Enterprise Client

