
EnterpriseClient CCEE Spring

Enterprise Client
CCEE Spring Integration

1

C
ap

ta
in

C
as

a
En

te
rp

ri
se

 C
li
e
n
t

R
IS

C

EnterpriseClient CCEE Spring

Table of contents
Download and install...3

Part of CaptainCasa installation...3
Maven..3

Use the CaptainCasa-Spring project-archetype...3
Do it yourself!..4

Source Code..4
Overview..5

Dispatcher..5
Dispatcher object resolution..5
Class DispatcherBySpringAccess...5

Implementing Spring Access...6
Activate Spring in your web application...6
The web-application-context..6
The dialog-session-context...6

Advantages of defining a dialog-sesison-context...7
Whole setup..7
Your Dispatcher-implementation..8
Summary..8

Other issues...10
Accessing the dialog-session-context at runtime...10
Hot Deployment..10

2

C
ap

ta
in

C
as

a
En

te
rp

ri
se

 C
li
e
n
t

R
IS

C

EnterpriseClient CCEE Spring

Download and install

Part of CaptainCasa installation
The CaptainCasa installation includes a file:

<installDir>
 resources
 addons
 eclnt_ccee.zip
 ...
 ...
 ...

This file contains the following library files that need to be added to your project:

eclnt_ccee.jar
eclnt_ccee_spring.jar

Add both files to your project, e.g. if using the CaptainCasa project structure add both
files to the webcontent directory:

<project>
 webcontent
 WEB-INF
 lib
 …
 eclnt_ccee.jar
 eclnt_ccee_spring.jar
 …

Add the libraries required for Spring to WEB-INF/lib as well.

Maven

Use the CaptainCasa-Spring project-archetype

There is a project-archetype than contains the configuration of Spring that is explained in
the next chapters. We recommend to use this archetype for creating your projects.

The archetype is available within the following remote catalog:

http://www.captaincasademo.com/mavenrepository/archetypecatalog.xml

In Eclipse the project is created in the following way:

• Select “File > New > Project...” from the menu.

• Select “Maven > Maven Project” in the popup dialog

• You then may select an archetype from a catalog of archetypes. If not yet done: create
a catalog by selecting “Add catalog...” and defining the catalog-URL
(http://www.captaincasademo.com/mavenrepository/archetypecatalog.xml).

3

C
ap

ta
in

C
as

a
En

te
rp

ri
se

 C
li
e
n
t

R
IS

C

http://www.captaincasademo.com/mavenrepository/archetypecatalog.xml
http://www.captaincasademo.com/mavenrepository/archetypecatalog.xml

EnterpriseClient CCEE Spring

Select the archetype “eclntwebapparchetype_spring”

• Do the other configurations in just normal way.

Similar steps need to be done if using e.g. NetBeans, or IntelliJ IDEA as development
environment.

Do it yourself!

(Refer to the documentation “Setting up a Maven Project” if you require information
about how to in general create a CaptainCasa Maven project.)

Add the dependencies that as follows.

 <repositories>
 ...
 <repository>

<id>org.eclnt</id>
<url>https://www.captaincasademo.com/mavenrepository</url>

 </repository>
 ...
 </repositories>

 <properties>
 <cc.version>20191102</cc.version>
 </properties>

 ...

 <dependencies>
 ...
 <dependency>
 <groupId>org.eclnt</groupId>
 <artifactId>eclntccee</artifactId>
 <version>${cc.version}</version>
 </dependency>
 <dependency>
 <groupId>org.eclnt</groupId>
 <artifactId>eclntccee_spring</artifactId>
 <version>${cc.version}</version>
 </dependency>
 ...
 </dependencies>

Source Code
Please note that all source code is available as part of the download. Sometimes textual
explanations leave the impression of something very complex going on and indeed things
are quite simple if you take a look inside – especially if you are already experiences with
Spring.

Take a look into the classes – there are only a few ones, and inside there are only few
lines of code!

4

C
ap

ta
in

C
as

a
En

te
rp

ri
se

 C
li
e
n
t

R
IS

C

EnterpriseClient CCEE Spring

Overview

Dispatcher
With CaptainCasa a page (.jsp) refers via expressions to its page bean. By default each
page is managed by exactly one bean-class.

Example:

demo.jsp

...
<t:row id=”g_1”>
 <t:field id=”g_2” width=”100” text=”#{d.DemoUI.firstName}”/>
</t:row>
...

The bean class is referenced through a so called dispatcher object which is represented
by the leading “d” within all the expressions of the page.

The “d” is resolved within the file “/WEB-INF/faces-config.xml” to a Dispatcher-instance.

faces-config.xml (example)

...
<managed-bean>
 <managed-bean-name>d</managed-bean-name>
 <managed-bean-class>managedbeans.Dispatcher</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>
...

And this Dispatcher-instance is the one to be responsible for transferring the name
“DemoUI” into a corresponding Java object. - The Dispatcher itself is just an
implementation of the java.util.Map interface, in which the get(...)-method is the one
which is overridden correspondingly.

Dispatcher object resolution
The Dispatcher is the one that is affected by the integration to Spring: instead of
following own rules how to resolve a name (“DemoUI”) into an object instance – it
requests the Spring-context to do the resolution.

Example, in the Spring-context there is a definition:

<beans ...>
 ...
 <bean id="DemoUI" class="test.DemoUI" scope="prototype">
 <property name="..." ref="..."/>
 </bean>
 ...
</beans>

Class DispatcherBySpringAccess
CaptainCasa provides within the eclnt_ccee_spring.jar-library a Dispatcher-
implementation that does the object resolution via Spring. The following text will tell you
details how to use this class.

5

C
ap

ta
in

C
as

a
En

te
rp

ri
se

 C
li
e
n
t

R
IS

C

EnterpriseClient CCEE Spring

Implementing Spring Access

There are so many ways to configure and to work with Spring. We will concentrate on the
XML-way in this documentation, but of course all other ways (e.g. annotation-based) are
supported as well.

Activate Spring in your web application
The spring framework needs to be integrated into the web.xml of your project:

...
<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>classpath:spring_context_webapplication.xml</param-value>
</context-param>
<listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>
...

The web-application-context
Part of this definition is the name of the XML file that sets up the bean definitions for the
web-application-context of Spring. In the example above we define the location to be
“classpath:spring_context_webapplication.xml”.

This XML file is the normal Spring-XML for setting up bean instances.

File: <project>/<Java-resources>/spring_context_webapplication.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean .../>
 </bean>

 <bean .../>
 </bean>

</beans>

This XML file already could be the end of the Spring integration story by telling you:
define your beans here – and they are picked up by the Dispatcher at runtime. - But: we
made things bit more structured...

The dialog-session-context
The class “DispatcherBySpringAccess” is an implementation of the “Dispatcher” and opens
up one Spring-context for each dialog-session. This dialog-session-context is arranged as
child to the web-application-context, so that all bean-definitions of the web-application-
context are also available within the dialog-session-context.

At runtime there is one dialog session for each browser instance. If the user opens up the
browser three times (either individual browsers or tabs inside one browser), then there
are three dialog sessions on server side – and there are three instances of dialog-session-
contexts as well.

6

C
ap

ta
in

C
as

a
En

te
rp

ri
se

 C
li
e
n
t

R
IS

C

EnterpriseClient CCEE Spring

(Please do not mix “dialog-session” with “http-session”. When using cookie-based session
tracking there is one http-session which may span multiple browsers, but still there is one
dialog-session per browser.)

There are two implementations of this dialog-session-context that come with
eclnt_ccee_spring.jar:

DialogSessionXMLApplicationContext
 (extending Spring's ClassPathXmlApplicationContext)

DialogSessionAnnotationApplicationContext
 (extending Spring's AnnotationConfigApplicationContext)

Both classes provide configuration methods to set-up there internal processing. In case of
the XML based approach the central method is...

DialogSessionXMLApplicationContext.setConfigLocation(...nameOfXmlFile...)

...in which the name of the XML-file is passed that is configuring the beans on dialog-
session-context level.

Advantages of defining a dialog-sesison-context

In simple scenarios the dispatcher-name-resolution could directly access the web-
application-context definitions. But, there are some advantages when using some explicit
context below the web-application-context:

• The dialog-session-context represents on dialog session. So you are able to keep all
objects which should be reach-able within one session-context – while still being able
to access definitions of the web-application-context, which is set up as parent of the
web-application-context.

• The dialog-session-context can be hot deployed easily. The definition of the
corresponding bean-XML file can be exchanged without deeply reloading the web-
application.

• ...and: it's just some nice structuring to not have all beans defined in one big context –
but have a separation of UI-related page beans and logic-oriented web-application
beans.

Whole setup
The Dispatcher-implementation “DispatcherBySpringAccess” is the one to create a dialog-
session-context-instance for each dialog session. Its inner implementation does not
directly create the corresponding context-instance, but requests the instance from the
web-application-contenxt using the id “DialogSessionApplicationContext”.

This means: in the web-appplication-context you set up the prototype-definition for the
dialog-context-instances:

File: <project>/<Java-resources>/spring_context_webapplication.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd">

 ...
 ...
 <bean id="DialogSessionApplicationContext"
 class="org.eclnt.ccee.spring.context.DialogSessionXMLApplicationContext"
 scope="prototype">

7

C
ap

ta
in

C
as

a
En

te
rp

ri
se

 C
li
e
n
t

R
IS

C

EnterpriseClient CCEE Spring

 <property name="configLocation" value="spring_context_dialogsession.xml"/>
 </bean>
 ...
 ...
</beans>

In the definition of “DialogSessionApplicationContext” you configure the corresponding
context-instances, in case of using the XML based dialog-session-context this is the
property “configLocation”.

In the example the configLocation “spring_context_dialogsession.xml” is used – so this is
the Spring-XML-definition one for the dialog-session-context, which now finally holds the
beans that are resolved by the Dispatcher (you remember the
“#{d.DemoUI.firstName}”...?).

File: <project>/<Java-resources>/spring_context_dialogsession.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd">

 ...
 <bean id="DemoUI" class="test.DemoUI" scope="prototype">
 <property name="..." ref="..."/>
 </bean>
 ...

</beans>

Your Dispatcher-implementation
Each project comes with an own Dispatcher-class – within a new project it is located in
package “managedbeans”. This dispatcher needs to extend the
“DispatcherBySpringAccess”:

package managedbeans;

import org.eclnt.ccee.spring.context.DispatcherBySpringAccess;
import org.eclnt.ccee.spring.context.SpringDispatcherInfo;
import org.eclnt.workplace.IWorkpageContainer;

public class Dispatcher extends DispatcherBySpringAccess
{
 public static DispatcherInfo getStaticDispatcherInfo()
 {
 return new SpringDispatcherInfo(Dispatcher.class,
 "spring_context_dialogsession.xml");
 }

 public Dispatcher()
 {
 }

 public Dispatcher(IWorkpageContainer workpageContainer)
 {
 super(workpageContainer);
 }
}

By providing the optional method “getStaticDispatcherInfo” this class delivers information
to the CaptainCasa tools, so that the beans that are defined in the dialog-session-context
are directly visible within the classes of the bean-browser-tool.

Summary
The total view on the scenario is:

8

C
ap

ta
in

C
as

a
En

te
rp

ri
se

 C
li
e
n
t

R
IS

C

EnterpriseClient CCEE Spring

Web Application

Browser
Instance

Browser
Instance

Web Application
Spring Context

web.xml Root
Dispatcher

Dialog Session
Spring Context

Dialog Session
Spring Context

Page
Bean

<bean id=“XyzUI“...>
</bean>

XyzUI

• The wep-application-context of Spring is created and defined inside the web.xml

• The dispatcher creates one dialog-session-context per dialog session. The definition of
this context is part of the web-application-context.

• Names of the dispatcher are resolved using the dialog-session-context.

9

C
ap

ta
in

C
as

a
En

te
rp

ri
se

 C
li
e
n
t

R
IS

C

EnterpriseClient CCEE Spring

Other issues

Accessing the dialog-session-context at runtime
You can access the dialog-sesion-context at runtime by using the API:

DialogSessionApplicationContextFactory.instance()
DialogSessionApplicationContextFactory.instance(ISessionAbstraction dialogSession)

Both methods return a Spring-AbstractApplicationContext-instance.

Hot Deployment
The implementations within eclnt_ccee_spring.jar are aware of dealing with hot
deployment within the CaptainCasa toolset. Hot deployment splits up the application
processing into two classloaders: the normal web-application classloader on
<webapp>/WEB-INF/lib-level and a child-classloader on <webapp>/eclnthotdeploy/classes
level.

The web-application part of the Spring integration is running within the web-application
classloader because this is the runtime starting point of Spring.

The dialog-session part of the Spring integration is managed by CaptainCasa, so here the
hot deployment is taken into consideration.

This means: when using hot deployment (which we always recommend!), then...

• The configuration of the web-application-context (in the example:
“spring_context_webapplication.xml”) must NOT be hot deployed. Changes to this file
require a reload of the whole web-application.

• The configuration of the dialog-session-context (in the example:
“spring_context_dialogsession.xml”) shoud be hot deployed. Changes to this file then
only require a quick hot deployment.

10

C
ap

ta
in

C
as

a
En

te
rp

ri
se

 C
li
e
n
t

R
IS

C

	Download and install
	Part of CaptainCasa installation
	Maven
	Use the CaptainCasa-Spring project-archetype
	Do it yourself!

	Source Code

	Overview
	Dispatcher
	Dispatcher object resolution
	Class DispatcherBySpringAccess

	Implementing Spring Access
	Activate Spring in your web application
	The web-application-context
	The dialog-session-context
	Advantages of defining a dialog-sesison-context

	Whole setup
	Your Dispatcher-implementation
	Summary

	Other issues
	Accessing the dialog-session-context at runtime
	Hot Deployment

