
CaptainCasa

Enterprise Client

App Start

1

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Table of Content
App Start...3

Motivation...3
Applet/Web Start require Java Installation...3
Stand alone Application...4
...App Start!..4
Purpose..5

Launcher Example – How it looks like..6
Launcher – How it works..7

Initial Client Installation..7
appconfig.xml Configuration File..7
Starting the Launcher on Client Side...9
Start Scripts on Client Side...10
What happens if the Server is not available?..10

Building your own App Start Scenario...10
The Starter Package..10
The appconfig.xml / Server-side definition..11
Test...!...12
Building an .exe Installer..12

Special Issues...14
“appstart.finished” – Files in Version Directories...14
Native Libraries...14
Proxy Configuration..14

Open Issues...16
Change Log..17

Version 20141008...17
Version 20150425...17

2

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

App Start

“App Start” is a small framework for starting JavaFX programs on client side as stand
alone application.

App Start is a small program, checking the version of the program to be started against
some server definition. If the server indicates that some new version of the program is
available then the corresponding software will be downloaded automatically and
executed afterwards.

The launcher is a free framework – we are open to share everything if it's of interest for
anyone. In case of interest: please contact us via info@CaptainCasa.com.

Motivation
The default ways of starting JavaFX based frontends are:

• A. start as Applet

• B. start via Web Start

• C. start as stand alone application

Applet/Web Start require Java Installation
Both the Applet and the Web Start way require a Java installation to be done before being
able to start a JavaFX application at the user's client.

Client Java Installation

Java Runtime Environment

JavaFX Client Application

jarjarjar

Server

jarjarjar

As consequence there are some problems:

• Some users/companies follow some general policy to not allow the installation of a
Java virtual machine on the end user's client. Typically the background of this policy is
the security discussion that came up with running applets within the browser. If this
discussion is a valid one or not: the possibility that you convince people to change this

3

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

policy is quite low...

• You have to live with the fact that the version of the runtime environment is not
defined by yourself but that is defined by the user's/company's environment. Especially
in the JavaFX environment, which is a quite young one, you want to use latest Java FX
releases. - JavaFX as “available technology” is part of Java 8 – it will take quite a while
until your users will adapt to this release.

• In addition: you want to develop and test your frontend with a certain Java version,
and then roll out, based on this version. You do not want to guarantee your software is
working with all potential Java releases that will come up...

So, though the Applet/Web Start way is the only one to somehow embed Java processing
within the browser environment, it is not the perfect one for rolling out JavaFX frontends
today.

Stand alone Application
This is the alternative: you deliver your Java software as a stand alone installation –
including the Java Runtime Environment in some sub directory. You do not have to
convince your users to install Java on the client! What you deliver is some type of native
application that internally uses Java and JavaFX.

This is more and more supported by the Java default tooling – bundling the JavaFX
program with the JRE, e.g. to provide a “setup.exe”-like installation.

Your Client Side Installation

Java Runtime Environment

JavaFX Client Application

jarjarjar

„setup.exe“

Problem now:

• This is a one time installation only – there is no concept of what happens if the
software needs to be updated on client side. - The automated reloading of the Java
Application that you know from Applet/Web Start is not available.

...App Start!
This is where our App Start is coming in: a small framework for launching JavaFX based

4

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

applications on client side, including the following features:

• During initial client side installation the JavaFX application is installed together with a
Java Runtime Environment and with the App Start launcher, so that all together runs as
stand alone Java application.

• The JavaFX application is started through the App Start launcher, which itself is a Java
program.

• When launching, the current client version of the application is checked against some
server version. If the server indicates that some new version is available, then the App
Start launcher will load the corresponding software via http(s) and install it within the
client system.

• There are three levels of changes that can be applied to the client software:

• Application level: there is a new version of the JavaFX application that is started.

• Launcher level: there is a new version of the Launcher itself.

• Java Runtime level: there is a new Java version to be used.

Java Runtime Environment

JavaFX Client Application

jarjarjar

App Start

launch

Server

jarjarjar

jar

load / update

jar

loa
d

/ u
pd

at
e

jre
zip

load /
update

FX ApplicationJava RuntimeApp Start

Of course the “Application Level” is the most typical scenario. The JavaFX application is
updated and you want these changes to be rolled out to the users of the application. - But
the other scenarios (Launcher level, Java Runtime level) are equally important in the long
run: at a certain point of time you want to upgrade the Java virtual machine that your
JavaFX application is built on. And a certain point of time, also the launcher will require
some update.

Purpose
So the App Start launcher's purpose is to automate and simplify the continuous roll out of
JavaFX based software started as stand alone application on client side.

Please note: the idea behind the Applet/Web Start processing is to have a general Java

5

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

installation on client side, which is used by multiple Java programs. The idea behind App
Start processing is to focus on one JavaFX application, which includes a Java Runtime
Environment as “invisible, contained part”, that is only used in the context of this one
JavaFX application.

Launcher Example – How it looks like
After starting the launcher comes up with a splash screen. In the bottom area of the
splash screen there are some status messages telling the user what's going on:

Typically the launcher will only show up for a short duration of time – because it just finds
out the buffered client version is in sync with the current server version. If there is some
need to upgrade and download corresponding files, then this will be shown to the user:

After the launcher has successfully started the JavaFX application, the splash screen will
disappear.

You may test the launcher and see how it's working by starting our JavaFX Enterprise
Client though the launcher: http://www.captaincasa.com/fxclient.html

6

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

http://www.captaincasa.com/fxclient.html

Launcher – How it works
The following text demonstrates how this program is embedded into the launcher
environment.

Initial Client Installation
The launcher works with a fix directory structure on client side. The structure is created
during initial setup of the client application:

<anydirectory>
 /bin
 start.bat
 /app
 /v_20140218_1
 xxx1.jar
 xxx2.jar
 /jre
 /v_17_51
 /bin
 /lin
 ...
 /launchfx
 /v_20140214
 launchfx.jar
 /resources
 appconfigurl.xml
 splash.jpg

You see that there are three main directories, which contain themselves version-
directories:

• The “app” directory holds the jar-file versions of the JavaFX application that is to be
launched. This folder typically is empty after installing the launcher – the first version
of the application will be loaded when starting the launcher the first time.

• The “jre” directory holds Java runtime versions.

• The “launchfx” direcotry holds the launcher versions.

After first installation you will find one JRE (v_17_51 in the directory structure above)
and one launcher version (v_20140214).

Inside the /launchfx directory there is a /resources-directory. Inside this there are two
files:

• A splash screen that is used by the launcher.

• A file “appconfigurl.xml” that contains a link to a server side configuration file. This
configuration file contains detailed information about the JavaFX application that is to
be launched. The file's content may look like:

<appconfigurl url=”http://www.captaincasademo.com/ccdemos/appconfig.xml”/>

The launcher is started through the bin/start.bat script using the initial Java version. It
accesses the URL that is defined in the launchfx/resources/appconfig.xml file, loads its
XML content, checks if there is some necessity to download updated versions and finally
starts the JavaFX application.

appconfig.xml Configuration File
This is an example of the appconfig.xml file that is loaded from the server:

<app

7

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

 appname="CaptainCasa Enterprise Client"

 appversion="20140218_1"

 launcherversion="5_0_20140218"
 launcherurl="${appConfigRootUrl}/eclntlaunchfx/launchfx_5_0_20140218.jar"

 javaversion="17_51"
 javaurl="${appConfigRootUrl}/eclntlaunchfx/jre_17_51.zip">

 <!-- Definition of application jars -->
 <jar jarurl="${appConfigRootUrl}/eclnt/libfx/eclntfx.jar"/>
 <jar jarurl="${appConfigRootUrl}/eclnt/libfx/jpedal.jar"/>

 <!-- Definition of application files (optional) →
 <!--
 <file fileurl="${appConfigRootUrl}/abc.def"/>
 -->

 <!-- Definition of startables -->
 <start id="DW"
 name="Demo Workplace"
 classname="org.eclnt.fxclient.elements.PageBrowserStarter">
 <vmparam value="-Xmx256m"/>
 <vmparam value="-Xms128m"/>
 <param value="url=${appConfigRootUrl}/faces/workplace/workplaceFX.jsp"/>
 <param value="loglevel=INFO"/>
 <param value="undecorated=true"/>
 </start>

</app>

The appconfig.xml contains the following information:

• appname – the name, used for logging purposes in the client

• appversion – this is the current version of the application. The client is keeping all jar-
files of the application under a version-directory. When the appconfig.xml contains a
new version, then all its jar files will be downloaded to the client into new version-
directory.

• launcherversion – this is the version of the launcher to be used

• launcherurl – link to the launchfx.jar file; if the client finds out that is needs to
download the launcher version, then this is the link to the corresponding launchfx.jar
version

• javaversion – this is the version of the JRE to be used; the version is a name, that does
not need to be in sync with some official Java version naming (but of course it makes
sense to use names that somehow are related to the Java version)

• javaurl – link to a .zip file containing the JRE. The zip file needs to contain the content
of the JRE-directory (typically containing a “bin”,
You may explicit define JREs for each operating system in addition by using the optional
attributes:

• javaurlwindows32 - link to a .zip file containing the Windows32 JRE

• javaurlwindows64 - link to a .zip file containing the Windows32 JRE

• javaurllinux32 - link to a .zip file containing the Linux 32 JRE

• <jar .../> - the jar files that form the JavaFX application

• jarurl – The url to a .jar file that is to be downloaded

• oscondition – Definition that the file is only used if the launcher is started in a
certain operating system environment. The currently supported operating systems
are “windows32”, “windows64” and “linux32”. By defining
“oscondition='windows32'” you define that the jar file is only used if the launcher

8

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

is started in a 32bit windows environment.
You may specify one or more operating system names by separating them with a
semicolon. Example: “oscondition='windows32,windows64'” defined that the
corresponding jar file is both used in a Windows32 and a Windows 64 environment.
This attribute is optional: if not defined then the corresponding jar file is used for
all operating systems.

• <file .../> - optional list of additional files that are loaded to the client side

• fileurl – The url to a file that is to be downloaded

• oscondition – optional, same as oscondition in <jar .../> section

• <start .../> - the configuration of how to start the client; one application may contain
one or several start definitions

• id – unique id of the start definition

• classname – start class (extending Application) to launch

• default - “true” for the default start definition (if using more than one start
defintion)

• <param .../> - Application parameters

• value – the value of the parameter

• <vmparam .../> - Java runtime parameters

• value – the value of the parameter

• <librarypathextension .../> - Optional. Library path extensions. If you pass native
libraries (e.g. DLLs) then the default library path which is generated points into
the app-version's directory. You may extend the path by adding one or more
librarypathextension-definitions.

• path – the path that you want to append to the library path

• oscondition – optional, same as oscondition in <jar .../> section.

As you can see in the example all URL-definitions can either be defined absolutely
(“http://...”) or they can be defined relatively to the path, by which the appconfig.xml
file itself is accessed (“${appConfigRootUrl}/...”).

Starting the Launcher on Client Side
When the launcher starts on client side, it loads the server side appconfig.xml and first
checks if the current version situation on client side is up to date:

• 1. The jar files of the JavaFX application to be launched are kept in the directory
“app/v_<appversion>/*”. The launcher reads the appversion-definition of the
appconfig.xml and checks if the corresponding directory is available. If not, it
downloads all the jar files (“<jar .../>” definitions) and saves them on client side in a
corresponding “app/v_<appversion>” directory. - The internal class loader of the
launcher will from now on use these files to start the JavaFX application.

• 2. The Java Runtime Environment that is used for launching the JavaFX application is
kept in directory “jre/v_<javaversion>”. If the javaversion-definition of the
appconfig.xml is not represented by a corresponding directory, the launcher will
donwload and unzip the java version into the corresponding directory. It expects the zip
file to contain the Java runtime files.

Example: the following screen shot shows the JRE 1.7 v51 zip file's structure

9

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

The only file which was added within the main directory is the appstart.finished – a
simple text file containing the text “Finished”. The role of this file is explained in the
chapter “Special Issues”.

• 3. Finally the launcher checks if the launcherversion definition in the appconfig.xml is
represented by a corresponding “launchfx/v_<launcherversion>” directory. If not, then
it will download the launcher-jar file and save it as “launchfx.jar” in the corresponding
directory.

If the launcher detects some version change of type 1. (app version) then there is no need
to restart the launcher, the new app version will be loaded and launched immediately.

If the launcher detects some version change of type 2. or 3. (java version, launcher
version) then it will not start the JavaFX application, but will request from the user to re-
launch the application.

Start Scripts on Client Side
In the /bin directory of the client side launcher, the following scripts are generated:

• start_<start-id>.bat – Per start configuration in appconfig.xml there will be one script
that starts the launcher according to the corresponding start-definition.

• start.bat – For the first start-definition in appconfig.xml, which is treated as the
default start definition, a start.bat file will be generated.

The script will be adapted whenever there is a change in the Java-version or in the
launcher-version.

What happens if the Server is not available?
If the server holding the appconfig.xml definition is not available, then the launcher will
use the last valid appconfig.xml definition.

Building your own App Start Scenario

The Starter Package
Somehow the App Start launcher has to come to the user's client. This is the starter
package consisting out of...

• The JRE (that is required to start the launcher)

• The launchfx.jar of the App Start launcher

• Two configuration files that YOU have to define...

10

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

• the appconfigurl.xml

• the spash screen

The start package is avaiable here: http://www.CaptainCasa.com/appstart.html

Download the starter package and unzip its content into any directory. The structure of
the directory looks like:

<unzipdirectory>
 /bin
 start.bat
 /jre
 /v_17_15
 /bin
 /lib
 ...
 /launchfx
 /resources
 appconfigurl.xml_template <== to be replaced
 splash.jpg_template <== to be replaced
 /v_5_0_20140218
 launchfx.jar

Now edit the “appconfigurl.xml” so that it points to a server address at which you will
provide the “appconfig.xml” file. - And define a “splash.jpg” image of your choice.

That's it! - You now have to check how the starter package is getting on the client of your
users. You may zip it and ask the users to unzip and then start the start.bat script. Or you
may event package it as an .exe installer. An example for this is given later on.

The appconfig.xml / Server-side definition
Now you need to create the “appconfig.xml” file and store it at the server location, that
your “appconfingurl.xml” file points to.

So take this XML as template...

<app
 appname="CaptainCasa Enterprise Client"

 appversion="20140218_1"

 launcherversion="5_0_20140218"
 launcherurl="${appConfigRootUrl}/eclntlaunchfx/launchfx_5_0_20140218.jar"

 javaversion="17_51"
 javaurl="${appConfigRootUrl}/eclntlaunchfx/jre_17_51.zip">

 <!-- Definition of application jars -->
 <jar jarurl="${appConfigRootUrl}/eclnt/libfx/eclntfx.jar"/>
 <jar jarurl="${appConfigRootUrl}/eclnt/libfx/jpedal.jar"/>

 <!-- Definition of startables -->
 <start id="DW"
 name="Demo Workplace"
 classname="org.eclnt.fxclient.elements.PageBrowserStarter">
 <vmparam value="-Xmx256m"/>
 <vmparam value="-Xms128m"/>
 <param value="url=${appConfigRootUrl}/faces/workplace/workplaceFX.jsp"/>
 <param value="loglevel=INFO"/>
 <param value="undecorated=true"/>
 </start>

</app>

...and update it in the following way:

• Define the appversion of your JavaFX application. Maybe you already have some version
numbering that you can apply here. - Please check that the appversion value does only
contain simple characters that can be used to form a proper file name. (On client side

11

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

http://www.CaptainCasa.com/appstart.html

a corresponding version directory will be created with prefix “v_”.)

• Define the <jar .../> files that are required by your JavaFX application, and place them
at corresponding locations within your server, so that they can be accessed via URL.

• Please note: the client will download the JAR-files using the corresponding URL-
definitions. It may make sense to explicitly name the JAR-files differently with
every version that you provide – in this case there will be no caching effect within
network (caching proxy etc.).

• Define the <start .../> section. There must be at least one start definition.

• Define the versions of the Java runtime and of the App start launcher and place the
corresponding resources at corresponding URL-locations.

• Create the corresponding zip file for the Java Runtime Environment by simply
zipping the content of a JRE installation.

• The launchfx.jar file is part of the starter package.

Test...!
And now install the update starter package on some client and start the bin/start.bat
script. The launcher should show up, downloading your JavaFX application and starting it.

Building an .exe Installer
We use Inno Setup (http://www.innosetup.com) for building setup.exe installers. It's
much simpler to tell a user “Run this installer!” rather than telling “Unzip and then start
the script...”.

The .iss file that we use looks as follows:

[Setup]
AppName=CC Enterprise Client FX Launcher
AppVerName=CC Launcher FX @@version@@
AppPublisher=CaptainCasa GmbH
AppPublisherURL=http://www.CaptainCasa.com/
AppSupportURL=http://www.CaptainCasa.com/
AppUpdatesURL=http://www.CaptainCasa.com/
DefaultDirName={localappdata}\CaptainCasa\LauncherFX
DefaultGroupName=CC Enterprise Client FX Launcher
OutputDir=C:\bmu_jtc\eclipse\workspace\eclnt_clientfxloader\temp
OutputBaseFilename=setup_launcherfx_@@version@@
Compression=lzma
SolidCompression=yes
PrivilegesRequired=lowest
SignTool=SIGNTOOL

[Languages]
Name: "english"; MessagesFile: "compiler:Default.isl"

[Files]
Source: "C:\bmu_jtc\eclipse\workspace\eclnt_clientfxloader\temp\launcherfx*";
DestDir: "{app}"; Flags: ignoreversion recursesubdirs createallsubdirs

[Icons]
Name: "{group}\Start Enterprise Client"; Filename: "{app}\bin\start.bat";
WorkingDir: "{app}\bin"

[Run]
FileName: "{app}\bin\start.bat"; StatusMsg: "Start Enterprise Client";
Description: "Start Enterprise Client"; Flags: nowait postinstall skipifsilent

[Messages]
WelcomeLabel2=This will install the CaptainCasa FX Client Launcher.

Replace all the wording that is CaptainCasa related with your own one.

12

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

http://www.innosetup.com/

Under [Files] refer to the directory which holds the updated start package (updated
means: with own splash.jpg, with own appconfigurl.xml).

13

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Special Issues

“appstart.finished” – Files in Version Directories
From App Start version 20140226 on, you'll find some strange files “appstart.finished” in
the version directories. What's the meaning of these files?

When the App Start launcher downloads e.g. a new version of a JavaFX application, then
it loads its libraries (jar-files) according to the definition of appconfig.xml. At the very
end, when having downloaded and stored all files, the App Start launcher writes the
“appstart.finished” file into the version directory.

A version is only treated as valid, if it contains the corresponding “appstart.finished” file.

This mechanism is used both for the version of the application, of the launcher and of the
jre.

Native Libraries
When you want to load native libraries then the following functions are useful:

• In the appconfig.xml you may define files to be downloaded to the client side
(“<file .../>” section). These files are directly downloaded into the corresponding
“app/v_<version>” directory on client side.

• The batch file that is created for starting the client directs the system library path to
the “app/v_<version>” directory on client side.

Result: just add your native libraries as files and directly access them afterwards from
your Java code.

In addition you may want to directly extend the system library path by adding
“<librarypathextension .../>” definitions to the “<start .../>” definition.

Proxy Configuration
There is a proxy configuration that shows up, if the client fails to connect to the server:

The corresponding data that you user defines is stored in a client file “launchconfig.xml”

14

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

that is directly located within the root directory of the launcher. Its content is:

<launchconfig>
 <proxy host="132.132.132.132"
 port="8080"/>
</launchconfig>

15

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Open Issues
The launcher framework is in development currently. All functions described in the
previous chapters are implemented and tested. But development continues...

The nice thing: the launcher may exchange itself, because it is managed in versions as
well. So a new version of the launcher can be easily rolled out.

• Signature Management

• ...would be nice if the launcher could check if all parts that it downloads from the
server side are signed with the same certificate

• Visual Appearance

• ...currently the launcher has a rather technical UI...

• Windows only...

• ...currently the launcher only supports Windows scripts (.bat).

• ...currently the URL to Java-versions are Windows-only.

16

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Change Log

Version 20141008
• In addition to JAR-files you can now specify any other file to be downloaded as well

via. See appconfig.xml definition, section “<file .../>”

• The batch file now contains the definition of the system library path, pointing into the
directory in which the application files are stored on client side

• You now may define operating system dependent download locations for the jre-zip-file
(appconfig parameters “javaurlwindows32”, “javaurlwindows64”).

Version 20150425
• There was a bug when reading the URLs for loading the Java runtime – parameters

“javaurlwindows32”, “javaurlwindows64”, “javaurllinux32” were not properly
interpreted.

• You may now extend the “start” information by library path information – see chapter
“appconfig.xml Configuration File”

Version 20150512
• When updating the JRE and/or the launcher-jar itself then so far the user had to cancel

the launcher window and then had to restart the launcher from the start menu
(Windows). Now there is a restart button within the launcher, simplifying this procedure
dramatically...

17

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

CaptainCasa GmbH

Hindemithweg 13
D – 69245 Bammental

06223 484147

http://www.CaptainCasa.com
info@CaptainCasa.com

18

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

http://www.CaptainCasa.com/

	App Start
	Motivation
	Applet/Web Start require Java Installation
	Stand alone Application
	...App Start!
	Purpose

	Launcher Example – How it looks like
	Launcher – How it works
	Initial Client Installation
	appconfig.xml Configuration File
	Starting the Launcher on Client Side
	Start Scripts on Client Side
	What happens if the Server is not available?

	Building your own App Start Scenario
	The Starter Package
	The appconfig.xml / Server-side definition
	Test...!
	Building an .exe Installer

	Special Issues
	“appstart.finished” – Files in Version Directories
	Native Libraries
	Proxy Configuration

	Open Issues
	Change Log
	Version 20141008
	Version 20150425
	Version 20150512

