
Memory Profiling using Visual VM

What type of profiling is most important?

Clear answer: memory profiling!

The speed of your application typically is something that you “feel” throughout your
whole development process. You get to know, when your application runs slow by daily
testing it during development. So, the CPU performance of your application should not be
something to get too much surprised, when changing from test environment to production
environment.

With memory, things are different: you do not “feel” the memory footprint of your
application during development:

• You do not get to know memory leaks because you typically restart your system too
often.

• You have so much memory locally available that you typically do not run into memory
problems – while testing the system in a single-user-way.

Consequence: memory profiling is a MUST during development. Switching on a productive
system without having checked the memory behavior of the application before is not a
too good idea.

Challenges

What is the typical memory footprint per user?
At a certain point of time your system administrator will ask you: how much memory
should I reserve for your application? The response is quite simple:

• You need to tell, what the fix memory size is that is used by your system

• You need to tell, what the typical memory size per user is

Typically, it does not make sense to do some in-depth-profiling (e.g. on object instance
basis) to gain these responses. It's better to start some simple heuristic approach by
observing the Java heap space.

Measuring is something very simple: you can access the information also through the
“System”-class in Java or you can use a tool like Visual VM. The only thing you have to
make sure is to start the garbage collector before measuring in order to get reproducible
and reliable results.

Are there memory leaks?
This is something which is more challenging. Making sure that your application does not
have memory leaks.

There is no other way than in-depth-profiling to find this out. The memory heap space is
not accurate enough to find out if your application leaks or not. Of course you may gain
some feeling, but nothing more.

So, here you need explicit tooling – luckily there is a free tool “Visual VM” that is made
available by Oracle that helps you a lot.

1

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Once again: when your application's memory leaks, then the only way to find details is by
measuring – not by thinking!!! The tool will tell you the truth about what happens inside
your application.

Setting up the Visual VM environment
You can download Visual VM from http://visualvm.java.net/.

After starting Visual VM you see a tree on the left showing the avaiable Java processes on
the right:

When having started the server part of CaptainCasa Enterprise Client it should be visible
as “Tomcat” in the left tree.

We experienced sometimes problems, the result being that the list of Java processed did
not show “our” Tomcat. If so, check the following:

• Start the server from a “real” Java-JDK, not from a Java-JRE. By default CaptainCasa
only comes with a Java-JRE...

• Start the Visual VM as administrator (right mouse click on visualvm.exe, select “run as
administrator”.

Observing the heap space
Double click on the Tomcat instance withing the tree on the left, then on the right select
the “Monitor”-tab.

2

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

http://visualvm.java.net/

You can see the allocated memory of the Java VM – both the currently used one and the
current maximum. Only the bottom blue line is the one to be interested in – the height of
the orange one is defined by the “-Xmx...m -Xms...m” options that you pass to the Java
process when starting “java.exe”.

Now start a CaptainCasa client to work against your Tomcat and begin to user your
application. ...and: do not panic...:

By just doing some simple things the memory will dramatically increase (e.g. the used
heap space gains 25 MBytes). - This is just normal when working with Java...!

You have to click “Perform GC” (garbace collector) within the tool in order to obtain
comparable results.

Finding memory leaks

Starting the profiler
For finding memory leaks you have to do some in-depth-profiling. In Visual VM there is a
corresponding “Profiler”-tab:

The typical first thing to do – before starting the profiling session - is to open the settings

3

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

area and take a look at the “Memory Settings”:

By default the counting of object instance if done for every 10th object allocation – in
order to save runtime performance. - But: we want to explicitly measure memory on
single instance level, so we recommend to count every instance. Set the corresponding
number to “1”:

Now click the “Memory” button and – wait! ...wait! ...wait!

You may observe the Tomcat's DOS box to see that something is going on:

4

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Visual VM is instrumenting the classes that are loaded within the Java process. This means
the byte code of the classes that is loaded is updated – and corresponding hooks are
inserted into the code that take over the counting of object instances.

We are not sure, if this is correct, ...but: we made the experience that you should not
touch Visual VM during the instrumentation phase. Otherwise we sometimes waited ages
for a feed back and sometimes had to shut down Visual VM.

After pressing the garbage collector icon you should see a list of the currently loaded
objects:

5

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Tpyically we switch off the auto-refresh (icon on the very left), because observing the
instances regularly without collecting garbage does not make too much sense.

Typical procedure
The absolute number of object instances that is shown in the list is typically not too much
relevant. You want to find deltas (leaks!).

In order to find the deltas you first have to think about some application procedure which
you start, process and close – and where you expect that after running the procedure all
of your allocated objects are released.

This may be a whole session (e.g. start client, do something, close client) or may be some
activity within your running application (e.g. from workplace: start workpage, process
workpage, close workpage).

The way of measuring is:

• (Switch off the automatic refreshing.)

• In Visual VM start the garbage collector, by pressing the corresponding icon.

• In Visual VM reset the results by pressing the “Reset collected results” icon. Now all
delta counters are reset.

• Perform your application procedure one or several times.

• In Visual VM press start the garbage collector again.

You now will see a list of objects that are currently loaded. You can filter the list by class
name:

6

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

In the columns on the right you see the number of instances that do exist, and you see
the delta from the point of time on when you last time hit the “Reset results” icon.

Now you can see which objects are not cleaned up correctly. But: you only see the
number of objects – you do not see where the objects are referenced (and as
consequence are NOT garbage collected).

Using the heap dump for single instance analysis
This is the time now for starting the heap dump tool:

The heap dump is collected by pressing the right mouse button on the Tomcat Java
process:

In the heap dump view switch to the “Classes”-view and filter the class that you are
interested in:

7

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

Select one class with the right mouse button and view the instances:

You now can check each instance – and e.g. the objects that are referencing the instance.

Visual VM Summary
When it comes to memory profiling Visual VM provides functions:

• You can observe the heap size (=> Monitoring)

• You can count object instances and can simply observer changes (=> Profiling)

• You can drill down to the level of single instances (=> Dump)

8

Ca
pt

ai
nC

as
a

En
te

rp
ri

se
 C

lie
nt

	Memory Profiling using Visual VM
	Challenges
	What is the typical memory footprint per user?
	Are there memory leaks?

	Setting up the Visual VM environment
	Observing the heap space
	Finding memory leaks
	Starting the profiler
	Typical procedure
	Using the heap dump for single instance analysis
	Visual VM Summary

