Memory Profiling using Visual VM

What type of profiling is most important?

Clear answer: memory profiling!

The speed of your application typically is something that you “feel” throughout your
whole development process. You get to know, when your application runs slow by daily
testing it during development. So, the CPU performance of your application should not be
something to get too much surprised, when changing from test environment to production
environment.

With memory, things are different: you do not “feel” the memory footprint of your
application during development:

* You do not get to know memory leaks because you typically restart your system too
often.

* You have so much memory locally available that you typically do not run into memory
problems - while testing the system in a single-user-way.

Consequence: memory profiling is a MUST during development. Switching on a productive
system without having checked the memory behavior of the application before is not a
too good idea.

Challenges

What is the typical memory footprint per user?

At a certain point of time your system administrator will ask you: how much memory
should | reserve for your application? The response is quite simple:

* You need to tell, what the fix memory size is that is used by your system
* You need to tell, what the typical memory size per user is

Typically, it does not make sense to do some in-depth-profiling (e.g. on object instance
basis) to gain these responses. It's better to start some simple heuristic approach by
observing the Java heap space.

Measuring is something very simple: you can access the information also through the
“System”-class in Java or you can use a tool like Visual VM. The only thing you have to
make sure is to start the garbage collector before measuring in order to get reproducible
and reliable results.

Are there memory leaks?

This is something which is more challenging. Making sure that your application does not
have memory leaks.

There is no other way than in-depth-profiling to find this out. The memory heap space is
not accurate enough to find out if your application leaks or not. Of course you may gain
some feeling, but nothing more.

So, here you need explicit tooling - luckily there is a free tool “Visual VM” that is made
available by Oracle that helps you a lot.

Once again: when your application's memory leaks, then the only way to find details is by
measuring - not by thinking!!! The tool will tell you the truth about what happens inside
your application.

Setting up the Visual VM environment

You can download Visual VM from http://visualvm.java.net/.

After starting Visual VM you see a tree on the left showing the avaiable Java processes on
the right:

(¢* VisualVM 134 gg
|Gile Applications View Tools Window Help
)

Applications Bl Bl || StartPage = G =)
=18 Local

b4 visualvm

& Edipse (pid 3328)

=é org.ecint.dient.page.PageBrowser (pid 4872)
Q arg.hsaldb.Server (pid 7635)

R K

e \» & VisualVM 1.3.4

VisualVM Home Java SE Reference at a Glance

Getting Started with VisualvVi Troubleshooting Guide for Java SE 6

VisualVM Troubleshooting Guide Troublesha 98%| Java™ 2 SE 6.0

Getting Started Extending VisualVM Monitoring and Managing Java SE 6

Show On Startup

When having started the server part of CaptainCasa Enterprise Client it should be visible
as “Tomcat” in the left tree.

We experienced sometimes problems, the result being that the list of Java processed did
not show “our” Tomcat. If so, check the following:

+ Start the server from a “real” Java-JDK, not from a Java-JRE. By default CaptainCasa
only comes with a Java-JRE...

» Start the Visual VM as administrator (right mouse click on visualvm.exe, select “run as
administrator”.

Observing the heap space

Double click on the Tomcat instance withing the tree on the left, then on the right select
the “Monitor”-tab.

http://visualvm.java.net/

& VisualvM 134 o o e |
File Applications View Tools Window Help
|: (= S @ W
| i
i Applications # | StartPage |44 Tomcat (pid 1124) 3| G (=) E
(|2 B Local [553 Overview | [Monitor | [Threads | £ Sampler | (5) Profier| |
*) VisuglVM -
2 Edipse (pid 3328) C Tomcat (pid 1124)
org.ednt.dient. page PageBrowser (pid 4872) e [FIE8 @Memory [Classes [Threads
org.hsgldb. Server (pid 7638) e
: =y Tomcat (pid 1124) Uptime: 8 min 24 sec Perform GC
- 458 Remote
=
Snapshots Heap | PermGen x
Size: 134,348,800 B Used: 35,895,056 B
Max: 536.870.912B
125 ME
98%,|
MB
MB
MB
ME
om
433120 4 4:33: 413335 4334 143345
[Heap size W Used heap
3

You can see the allocated memory of the Java VM - both the currently used one and the
current maximum. Only the bottom blue line is the one to be interested in - the height of
the orange one is defined by the “-Xmx...m -Xms...m” options that you pass to the Java
process when starting “java.exe”.

Now start a CaptainCasa client to work against your Tomcat and begin to user your
application. ...and: do not panic...:

14:36:30 14:37:00

By just doing some simple things the memory will dramatically increase (e.g. the used
heap space gains 25 MBytes). - This is just normal when working with Java...!

You have to click “Perform GC” (garbace collector) within the tool in order to obtain
comparable results.

Finding memory leaks

Starting the profiler

For finding memory leaks you have to do some in-depth-profiling. In Visual VM there is a
corresponding “Profiler”-tab:

The typical first thing to do - before starting the profiling session - is to open the settings

area and take a look at the “Memory Settings”:

Settings

ﬁ Stop

CPU settings || Memary settings : x

() Profile object allocations

@) Profile object allocations and GC
Track every 10| object allocations

[7] Record allocations stack traces

By default the counting of object instance if done for every 10" object allocation - in
order to save runtime performance. - But: we want to explicitly measure memory on
single instance level, so we recommend to count every instance. Set the corresponding

number to “1”:

Settings

ﬁ Stop

CPU settings | Memory settings X

() Profile object allocations

(@ Profile object allocations and GC
Track every 11+ object allocations

[7] Record allocations stack traces

Now click the “Memory” button and - wait! ...wait! ...wait!

4" VisualVM 134

File Applications View Tools Window Help

=S s E .

StartPage |4 Tomcat (pid 1124) 3| G (=)

& org.ednt.dient.page.PageBrowser (pid 4872)
é org.hsqgldb. Server (pid 7638)

2

&5 org.ednt.dient. ztest. Test6Dialog (pid 5944)
48 Remote

- [Z] Snapshots

| [58 overview |] Monitor [[] Threads | £, Sampler | () Profiler ‘

< Tomecat (pid 1124)
Profiler [Betfingg

Status: profiing inactive

Profiing results

ot B

aj

You may observe the Tomcat's DOS box to see that something is going on:

0 exor-veotons A = - ===

0 2 e 0 B ECE -
P10 E E e = = Ene e e 0 0 0

EEEEEEEEEE

1
0
G
G
G
H
A
A
A
G
G
G
0
0
0
0
G
G
G
§
A
A
A
G
G
G

ol o DBl o Lo Lo Do o o fao oo o o oo o o R o)

Visual VM is instrumenting the classes that are loaded within the Java process. This means
the byte code of the classes that is loaded is updated - and corresponding hooks are
inserted into the code that take over the counting of object instances.

We are not sure, if this is correct, ...but: we made the experience that you should not
touch Visual VM during the instrumentation phase. Otherwise we sometimes waited ages
for a feed back and sometimes had to shut down Visual VM.

After pressing the garbage collector icon you should see a list of the currently loaded
objects:

File Applications View Tools Window Help

|| S B & W E

StartPage | Tomcat (pid 1124) 5|

LMEE

i Applications # |

o B Local

] visualvm

& Edipse (pid 3328)

& org.ednt.dient.page.PageBrowser (pid 4872)
Q org.hsqgldb. Server (pid 7638)

&

: &5 org.ednt.dient. ztest. Test6Dialog (pid 5944)
; @Ramobe

- [E] snapshots

| [58 overview |] Monitor [[] Threads | £, Sampler | () Profiler

< Tomecat (pid 1124)

Profiler

Profile: |

B cru][[Memary ” [stop]

Status: profiing running (7,752 dasses instrumented, tracking each 10th object)

[T settings

Profiing results

B Cf)E> | S soapshot |

Class Name - Live Allocated Objects Live Bytes + Live Bytes Live Objects Generations
java.lang.reflect. Field |] 2888 (11%) 1 -
char(] I 19
java.lang.refiect. Method [] 1
java.lang.refiect. Constructor |] 1
java.net. SocksSocketImpl |] 1
java.lang. Thread [] 1
java.lang. Class]]] 1
java.uti, HashMap$Entry[] [| 1
java.lang. ThreadLocal§ ThreadLocalMap$Entry[] [| 1
short[] [] 1
java.uti, HashtablesEntry[] [| 1
java.lang, String [] 1|~
£ [Class Mame Filter] -
Live Results

<]

Tpyically we switch off the auto-refresh (icon on the very left), because observing the
instances regularly without collecting garbage does not make too much sense.

Typical procedure

The absolute number of object instances that is shown in the list is typically not too much
relevant. You want to find deltas (leaks!).

In order to find the deltas you first have to think about some application procedure which
you start, process and close - and where you expect that after running the procedure all
of your allocated objects are released.

This may be a whole session (e.g. start client, do something, close client) or may be some
activity within your running application (e.g. from workplace: start workpage, process
workpage, close workpage).

The way of measuring is:
* (Switch off the automatic refreshing.)
* In Visual VM start the garbage collector, by pressing the corresponding icon.

* In Visual VM reset the results by pressing the “Reset collected results” icon. Now all
delta counters are reset.

* Perform your application procedure one or several times.
* In Visual VM press start the garbage collector again.

You now will see a list of objects that are currently loaded. You can filter the list by class
name:

oo
4° VisualVM 134
File Applications View Tools Window Help
=8 s E.E
|| startpage [Tomeat (d 1124 1| LhEE
| [overview |] Monitor [[] Threads | £, Sampler | () Profiler ‘
C Tomecat (pid 1124)
& org.ednt.dient.page.PageBrowser (pid 4872) Profier 7l Settings
é org.hsgldb. Server (pid 7638)
= Tomeat (pid 1124)
Profile: CPU Memor: Stoj
: &5 org.ednt.dient.ztest. Test6Dialog (pid 5944) [©] E_ﬁ i I [B sor]
; @ Remote Status: profiling running {7,757 dasses instrumented, tracking each 10th object)
{2 Snapshots
Profiing results
|8 | 5 sromot |
Class Name - Live Allocated Objects Live Bytes Live Bytes Live Objects Generations v
workplace, DemoBudget$BudgetLine 1 400B (0.5%) 5 {0.2%) 1 -
workplace, Dispatcher | 112B 1 1
org.ednt.warkplace. Workpage | 80B 1 1
org.ednt.warkplace. WorkpageContainers WorkpageInfo 40B 1 1
warkplace, DemoBudget 208 i 1
workplace. DemoBase$MyParser 0B 0 0
org.ednt.warkplace. IWorkpagelifecycleListener]] 0B]]
L= | norkplace. - @
Live Results
)

In the columns on the right you see the number of instances that do exist, and you see
the delta from the point of time on when you last time hit the “Reset results” icon.

Now you can see which objects are not cleaned up correctly. But: you only see the
number of objects - you do not see where the objects are referenced (and as

consequence are NOT garbage collected).

Using the heap dump for single instance analysis

This is the time now for starting the heap dump tool:
The heap dump is collected by pressing the right mouse button on the Tomcat Java
process:

A I et Wl I F e

-1
RO,

é org.ednt.dier
Remaote Sample
Snapshots

Profile

Thread Dump i
Heap Dump

Profiler Snapshot
Application Snapshot

Enable Heap Dump on OOME

Properties

In the heap dump view switch to the “Classes”-view and filter the class that you are
interested in:

StartPage | Tomcat (pid 1124) 5|

|47 visualvm

& Edipse (pid 3328)

& org.ednt.dient.page.PageBrowser (pid 4872)
é org.hsqgldb. Server (pid 7638)

&

i é org.ednt.diient. ztest. TestsDialog (pid 5944)

; @ Remote

Snapshots

Overview |] Monitor |

< Tomecat (pid 1124)

Heap Dump

<)3 + | 0Summary © Instances @ 0OGL Consale

veads | 3 Sampler | (5) Profiler | (] heapdump] 03:3:10PM =

m@@l

| ®

E Classes

Compare with another heap dump > ‘

Class Mame

workplace. DemoBudget$BudgetLine
workplace. DemoIntro$ItemAction
warkplace. DemoBudget

warkplace. Demolntro

workplace. DemoBase$MyParser
workplace. DemoLabelVertical
warkplace. DemoCombofield
workplace. DemoMinispread
workplace. DemoBase

workplace. DemoLabel

warkplace. DemoMinispread$MyRow
workplace. DemoLabelSequence
workplace. DemoHelloWorld
warkplace. DemoBasicControls
warkplace. DemoFlush

workplace.Dema

Instances [%] v Instances

46
3
i
1
0
)
0
o}
0
)
0
o}
0
)
0

- ®

aj

File Applications ¥iew Tools Window Help

Select one class with the right mouse button and view the instances:

S W W

[] Aray type | © Chjecttype | @ Primitive type | 4 Staticfield | ¥ GCRoot | € Loop

Applications & | StartPage 5|4 Tomcat (pid 1124) 32| E= =)
28 Local Overview | [i#] Monitor | [Threads |) sampler | () Profier | &} heapdump] 03:39:10PM =
|47 visualvm
& Edipse (pid 3328) Z Tomcat (pld 1124)
ﬁ nrg‘:dn‘;.:i-:nt.paga..:j;::'uwser (pid 4872) Hezp Dump
AEEEm b | @ sumey G @ o consse
i ERﬁ m‘i‘Ed”t'dlent'm“'ﬁsm'a‘"g {pid 5949) @workp\ace.DemoBlldgﬂSBMgetLine Instances: 46 | Instance size: 70 | Total size: 3.220 | Compute Retained Sizes
i Ss;n:shom E‘ Instances x | ﬁ Fields x
Instance & Field Type Value
@ #1 = |@ this DemoBudgetéBudgett ine #6
o =2 F| O thissd DemoBudaet e
@ #3 O m_enabled boolean false |
@ #4 = © m_areas HashMap #4479
9 #5 @ m_childNodes Arraylist #5775
Q #6 @ m_parentNode DemoBudget$BudgetLine #1
@ #7 - O m recuestfocus lona 0T
© 8 8 References x
o #
P Fiekd Type Value
o =11 @ this DemoBudget$BudgetLine #6 -
© #12 © m_parentiode DemoBudgetéBudgetiine 46 U
o =13 © m_parentNode DemoBudget$BudgetLine #43 2
@ £14 © m_parentiode DemoBudgetéBudgetLine =44
@ #15 I @ m_parentNode DemoBudget$BudgetLine #45
o =15 @ m_parentNode DemoBudgetéBudgetLine 240
~ e b4 © m parentNode DemoBudaetsBudaetline #41 7

@

You now can check each instance - and e.g. the objects that are referencing the instance.

Visual VM Summary

When it comes to memory profiling Visual VM provides functions:

* You can observe the heap size (=> Monitoring)

* You can count object instances and can simply observer changes (=> Profiling)

* You can drill down to the level of single instances (=> Dump)

	Memory Profiling using Visual VM
	Challenges
	What is the typical memory footprint per user?
	Are there memory leaks?

	Setting up the Visual VM environment
	Observing the heap space
	Finding memory leaks
	Starting the profiler
	Typical procedure
	Using the heap dump for single instance analysis
	Visual VM Summary

