

 Less Code

More UI

CaptainCasa Enterprise Client

Less Code

Less Code

Still many big application systems have failed

to successfully move into modern, web-based

application structures. And still many

application projects suffer from a too high

effort of web-based programming.

Lack of efficiency

The world of today’s browser frameworks is

frontend-driven. They are based on what the

browser provides (HTML, JavaScript, CSS) and

try to simplify and organize the development

of frontends inside the browser.

This frontend complexity directly influences

the efficiency of application front end

development. A high level of skills is expected

from developers, not only for developing

screens but also for binding them efficiently

to server-side processing.

Lack of long-term

stability

The world of UI frameworks is a volatile one:

there is constant coming and going of

frameworks. Even big providers of frameworks

are changing their frontend framework

strategy constantly – setting the previous

framework to deprecated and pushing the

new framework as new hype.

For complex business applications this

typically means some huge effort to adapt

and to re-code.

CaptainCasa Enterprise

Client

CaptainCasa Enterprise Client is a server-

driven UI framework that was developed with

the complexity of big business applications in

mind.

The core problems “lack of efficiency” and

“lack of long-term stability” are solved as

part of the framework’s architecture. The

framework is open both on frontend side

(integration of new components) and on

backend side (integration to business logic

frameworks).

It consists on the one hand out of a rendering

client running as single page application

within the browser. The rendering engine is

following the so-called RISC method, which

grants a maximum level of browser

compatibility and that comes with an

excellent performance.

The rendering client talks to the server

processing through an http interface, in which

layouts are sent from the server to the client

and events / data changes are sent back to

the server processing.

The server is a JAVA-EE based Java

implementation that manages the application

screens and that can smartly integrate into

server-side Java frameworks to run the

application logic.

Zero code on

browser side

Zero code on browser side

Reducing the amount of application code

starts at client side – within the browser!

CaptainCasa Enterprise Client completely

unburdens the application developer from any

coding within the frontend.

Zero code

No application development is done on client

side – all application development is done on

server side only.

This means:

• No JavaScript coding

• No HTML coding

• No CSS management

Zero fighting with

HTML

Working with HTML technologies is exciting –

but means to spend quite some effort in areas

which are outside the application scope. With

CaptainCasa Enterprise Client no efforts need

to be spent in areas like:

• Browser incompatibilities

• Working with scripting languages which

require much more quality attention than

e.g. working with Java

• Technically managing different device

sizes / device capabilities

Zero redundancy of

logic

If coding inside the browser, then you pre-

execute certain application logic on client

side which is later executed on server-side

anyway. This means that you have a certain

degree of redundancy between the logic on

client-side and the logic on server-side.

With the Zero-code-approach of CaptainCasa

Enterprise Client all the logic is on server-side

– there is no redundancy.

Zero HTML skill set

expected

Application developers are not expected to

provide any HTML skill set as consequence. A

normal Java skill set is enough in order to

quickly and efficiently develop screens from

the server-side.

Zero split up of

development

Application development teams are in many

cases split up into the “frontend-guys” and

the “backend-guys” - meaning high effort to

synchronize both parts of the team.

With CaptainCasa Enterprise Client this

separation is not required – any development

is done in a consistent back end environment.

Zero browser-server

communication code

Zero browser-server communication

code

The client processing within the browser

needs to talk to the server-side processing.

With CaptainCasa Enterprise Client this

communication is completely covered by the

framework.

Zero code

The communication between browser and

server is part of the framework and is

completely transparent for the application

development.

Zero round-trip

management

Binding a client-side processing to server-side

logic typically means to carefully manage the

communication round-trips in between. The

number of round-trips and the data volume of

each round-trip are essential for the

application runtime performance.

Within the CaptainCasa framework a blocked

data communication is guaranteed: each

interaction of the user which is relevant for

synchronizing with the server (e.g. pressing a

button) leads into exactly one round-trip to

the server-side. The data volume is restricted

to what is visible within the current screen.

All grid data is managed in a way, that only

the visible items are communicated from the

server to the client. A grid may have

thousands of items on server-side, but only

these items are communicated to the client

that are currently visible.

Lightweight round-trip

concept

All communication between client and server

is based on the exchange of changes only.

This means: if a screen is updated by the

application interaction logic (e.g. switching

from one content to the next), then only a

reduced set of data is sent from the server to

the client. This on the one hand reduces the

data volume of communication significantly

and on the other hand improves the speed of

the client-side rendering.

Round-trips between the browser and the

client are lightweight as consequence.

Zero exposing of fine-

granular APIs

There is only one API between the browser

and the server: the server sends layout

definitions to the browser – the browser sends

data changes and user interface events to the

server side.

There is no need to expose fine granular

functional server APIs for any part of the

application to just serve the API requirements

of the screen processing.

Less interaction

code on server side

Less interaction code on server side

“Descriptive first” is the way to develop

screens with CaptainCasa Enterprise Client.

There is no code required to define which

component needs to be placed at which

places.

Zero layout code

The layout definition itself is not programmed

but defined in XML. Re-positioning of

components inside the layout, changing

texts/images/etc. – all this does not affect

any code.

Example: the following screen…

… is defined by the following layout

definition:

<t:rowdemobodypane rowdistance="5" >
 <t:row>
 <t:label
 text="Your Name" width="120" />
 <t:field id="g_ccpreview_4"
 text="#{d.HelloWorld.name}"
 width="200" />
 </t:row>
 <t:row>
 <t:coldistance width="120" />
 <t:button
actionListener="#{d.HelloWorld.onHello}"
 text="Hello!" />
 </t:row>
 <t:rowdistance height="50" />
 <t:row>
 <t:label text="Result"
 width="120" />
 <t:field enabled="false"
 text="#{d.HelloWorld.output}"
 width="100%" />
 </t:row>
</t:rowdemobodypane>

This layout definition can be created by using

a WYSIWYG layout editor tool.

Less interaction code

Finally, there is some code – for processing

data changes and events from the front-end

side and for managing the interaction.

public class HelloWorld
{
 String m_name;
 String m_output;

 public void setName(String value)
 { m_name = value; }
 public String getName()
 { return m_name; }

 public String getOutput()
 { return m_output; }

 public void onHello(ActionEvent ae)
 {
 if (m_name == null)
 m_output = "No name set.";
 else
 m_output = "Hello World,"
 +m_name+"!";
 }
}

The code represents the so-called View-Model

of the corresponding screen. – Each screen

definition (XML) and its interaction (Java)

form a unit that is encapsulated via interface

and events, so that it can be easily embedded

and re-used by any other screen.

Dynamic layout

Of course, not all screens are statically

defined. Example: you may want to

automatically create a screen out of some

meta data, e.g. of a business object

definition.

The XML that is normally passed by a static

file-definition now is internally passed as

node-hierarchy – that’s the only difference.

Still the layout and arrangement of controls is

separated from the interaction code behind!

Less binding code on

server side

Less binding code on server side

From application developer’s point of view

CaptainCasa Enterprise Client is the “landing

zone” of the UI on the server-side. Each

screen or part of a screen is reflected by

some corresponding object instance within

the server at runtime.

How this object instance now works with the

business logic below, this is up to the

concrete usage scenario. Due to the usage of

Java and open standards there is no problem

to bind to any framework.

Direct binding to

business logic

There are many ways to structure the

business logic on server side within Java.

Examples:

• Spring

• EJB

• Direct Java-implementation based on

Hibernate / JPA

All these ways somehow allow to pass data

into and out of the logical processing. The

typical building blocks are:

• Data Objects to represent the data

structure – typically implemented as so-

called “PoJo”-objects (plain old Java

objects) or implemented as hash-table-

data-holders.

• Object Factories to keep objects and to

load objects.

• Transactions.

When implementing screens using the

CaptainCasa framework then the interaction

layer can flexibly adapt to the logical layer –

re-using all structures that are exposed.

Example:

• Data structures of the business logic layer

can be directly referenced from screens.

Composite controls

Any screen or part of a screen that is created

within CaptainCasa Enterprise Client can be

re-used in other screens – e.g. as part of the

other screen or as popup-screen. Each screen

is represented by one object instance and

provides an explicit interface to initialize, to

update and to listen to screen events.

An implementation of a screen is a

“composite control” by itself and may be

used for certain purposes:

• Encapsulation of “high value components”

that are re-used many times. Example: an

address-input-pane

• Providing of configure-able components to

take over complex parts centrally.

Example: a generic grid which is bound to

a list of data objects

There is no difference between “developing a

screen” and “developing a composite

component”.

Rapid prototyping

For rapid prototyping the UI processing can be

simply built without any serious business logic

behind, but with some simulation of business

logic.

All calls from the user interface to the logical

layer are directed to a so-called facade-

interface which is implemented by some

dummy logic at the beginning. - Later, the

real logic can be plugged behind step by step.

More UI

More UI

The world of web user interfaces is confusing:

on the one hand there are millions of great

web pages available throughout the world –

on the other hand the development of

complex web pages still is not simple at all

and there are important issues which are still

not properly solved with HTML based

technologies.

CaptainCasa Enterprise Client overcomes

limitations of the browser by using a

rendering concept that follows the RISC

method. All components are built on a set of

basic, simple browser elements which are

such basic, that they are supported by any

browser. Complex components are assembled

out of these basic elements.

This rendering concept not only defines a

unique level of browser compatibility, but

also is the technical reason for decoupling the

functional capabilities of components from

the browser’s capabilities.

An own rendering layer that is solid, fast and

stable is the starting point of any front-end

framework. And it is the central point of

independence in the volatile world of web

frameworks.

Rock solid, high

performance

browser processing

Rock solid, high performance browser

processing

CaptainCasa follows the so-called RISC

method on browser side: only a small subset

of basic HTML elements is used. All functional

components (button, field, combo box, grid,

menu, …) are assembled out of these basic

HTML elements. The assembly is done within

a lightweight JavaScript library.

Unique browser

compatibility

This approach guarantees a unique

compatibility throughout various browsers. All

the basic elements and the way they are used

are supported by any browser.

All access to these basic elements within the

client is shrink-wrapped by some JavaScript

“kernel layer”, which rules the access to the

basic elements and in which – if any – browser

dependencies are managed. This kernel layer

is small – and only consists out of 2.500 lines

of JavaScript code.

The assembly level (JavaScript classes) on top

is simple JavaScript processing as well.

Excellent performance

The browser is used in a very performant way.

The browser's role is to render simple

elements (e.g. DIV elements) at defined

coordinates only.

Layouting (i.e. the decision where to place

which component following dedicated rules)

is executed within corresponding components

on a JavaScript level. - JavaScript in the

meantime is a language which is executed

with high performance, utilizing just-in-time

compilers.

Rock solid

There are no dependencies to other HTML

frameworks when it comes to the rendering.

There are only limited dependencies to HTML

due to the RISC method that is used. The

layouting (i.e. the concrete positioning of

controls) is done by layout management

components (and not by the browser).

Consequence: the rendering processing is rock

solid and predictable.

Overcoming browser

limitations

Overcoming browser limitations

Browser layouting is

limited in many areas

Still the browser has layout limitations which

have their reason in the fact that its history

comes from rendering text data. Example:

vertical layouting in the browser is done with

the strategy of rendering a page with some

infinite height.

Pretty normal situations like “fix header –

scrollable body – fix footer” are already

causing problems with the browser's default

layouting and as consequence require some

explicit JavaScript management. This gets

even more complex if pages/screens are

nested one into another.

Overcoming the

limitations

Within the CaptainCasa framework all

components are based on a screen based

rendering concept instead of a page-based

rendering concept.

All layout managers are mini-JavaScript

programs that can follow any layouting

strategy – there are no limits.

The default component library comes with

sophisticated layout managers that cover both

the requirements of...

• general screen layouting (Example:

header, scrollable body, footer)

• complex form processing (mixture of

components, some defined with

percentage sizes, some with pixel sizes)

• graphical processing (x,y,z positioning)

• adaptive layouting (layout adapts to

available physical space)

One place of layouting

In normal web developments the layout is

defined at several places – especially if it

comes to adaptive layouts:

• The HTML elements that are created

• The CSS definitions that e.g. define

media-dependent layouts

• JavaScript processing that is somewhere

in between.

With CaptainCasa the layouting is defined

exactly at one place: within the component

that manages the layout. This makes it very

easy to...

• exactly follow why the layout is

assembled in a certain way

• embed one component into another,

without mixing and mashing layouting

strategies

Long term browser

stability

Long term browser stability

The life-cycle of a business application

typically exceeds the life-cycle of today’s

web frameworks.

CaptainCasa Enterprise Client in its history

proved that it is possible to have one user

interface architecture, which spans the life

cycle of your application.

Independent HTML

stack

CaptainCasa Enterprise Client comes with its

own HTML stack for two reasons:

The principle to use low level elements only

as base for complex components ensures the

browser compatibility and flexibility that is

used to long term serve the UI requirements

of business applications. The CaptainCasa

HTML stack is no encapsulation of any existing

HTML technology but is a way of managing

HTML in an efficient, flexible and robust way.

The market of HTML frameworks is a volatile

one, in which frameworks constantly are

hyped on the one hand and are deprecated on

the other hand. The size of these framework-

stacks typically is a huge one and the

investment to use it is huge as well. - As

consequence the deprecation of an HTML

framework stack has massive consequences.

By using some own HTML stack, CaptainCasa

is independent from any other framework –

both from functional point of view and from

volatility point of view.

Explicitly decoupled

client

The thin client principle of the CaptainCasa

framework ensures that the actual UI

implementation (i.e. the rendering of

controls) is completely decoupled from the

application's screen implementation (i.e. the

interaction logic on server side).

The client is some independent program – in

the browser a single page application built

with JavaScript - to render screens according

to a protocol. In principle the whole client

can be exchanged from one technology to the

next without even telling the application

screen processing about.

CaptainCasa history:

from Swing via JavaFX

to RISC-HTML

Exactly this happened two times within the

history of CaptainCasa:

• CaptainCasa started with a Java-Swing-

based client in 2007

• A parallel, compatible client was provided

using Java FX in 2013

• A web client (“RISC Client”) was provided

in 2017.

All clients are based on the same protocol

between client and server and all clients

share the same control library. As

consequence there was only minimal (“zero”)

effort to transfer a former Swing-based

application into a web-based application by

just exchanging the rendering client – without

applying changes to the server side

application.

Rich component

library

Rich component library

The size and quality of the component library

is a core issue when starting application

projects. Even though the idea of assembling

different components from different sources

into one screen might technically sound nice,

it is important to start with a rich set of

consistent components.

Rich set of

components

The CaptainCasa component library includes

more than 100 components. They can be

separated into:

• Dialog-window components (modal,

modeless dialog-windows, standard

dialog-windows)

• Structure components (header, body,

footer, status bar, ...)

• Layout & Container components (pane,

tabbed pane, scroll pane, row, overlay

area, adaptive area, …)

• Data components (label, field, combo

box, combo field, slider, checkbox, radio

button, …)

• Animation components

• Grid and tree components

• Integration components (charting, Google

Maps, Open Street Map)

• Components for WYSWIWYG editing of

content

• Invisible components (timer, reaction on

server-side events, client data-

exchange, …)

Consistent set of

components

All components share a consistent way of

sizing, rendering, styling, event management,

support of keyboard, drag & drop and

management of popup menus.

High level of quality

within components

The set of components and the properties to

control the components were defined from

2007 on and constantly improved. As

consequence there is a high level of built-in

functions, that simplify the creation of typical

application screens.

Example: the default FIELD component

includes:

• Definition of data type to be checked

during input; checking against regular

expressions; max length, lowercase,

uppercase support

• Support of internationalized data types

(date, time, decimal)

• Sophisticated ways of helping the user

(from classical F1-help to user hint

popups, interactively showing up)

• Different ways of triggering events to the

server side (e.g. triggering server round-

trip after n milliseconds of inactivity)

• Sophisticated background drawing (error

field, mandatory field)

• Sophisticated focus management, explicit

setting of focus, individual tab-order

• Possibility to add any type of value help

dialog-windows

Integration of new

graphical components

The integration of new components is done

through a simple set of JavaScript interfaces

and by some registration within server-side

xml-files. There is a simple integration layer

for integrating other pages (e.g. Google Maps,

charting libraries, …).

Consistent

application

look & feel

Consistent application look & feel

Hundreds of screens...

A business application typically provides some

hundreds of screens to the user. Many of

them are “boring“ (customizing screens,

master data screens), some of them are really

eye catching (planning boards, interactive

charts, …).

Governing the access

to UI features

CaptainCasa limits the direct access to native

browser UI features for the application

developer – and governs the access by making

each new feature part of the central control

library, so that everyone can benefit.

Typically, the implementation of new UI

features is done by some client experts which

are familiar with JavaScript / CSS / HTML.

The features themselves then are brought to

the application developer as new control or as

extended attributes of existing controls.

Simple definition of

style and style variants

The style management is simplified by

defining the style as XML and editing the style

by using some comfortable tool. The CSS-file

is generated from the XML definition. The XML

definition is based on variables for central

values (e.g. font family, central color

definitions), so customer-specific styles can

be easily created both at design- and at

runtime on a variable level – without knowing

anything about CSS.

For each component (e.g. button) you can

define both a default style and dedicated

style variants. When placing a component into

a layout you define which style variant to use.

As consequence you can set up central style

variants for all controls, that represent a

certain usage of the control (e.g. button is

used in the header area).

The style management includes a simple to

use tool for end-users to define own styles at

runtime.

Composite

Components

Each screen that you define with CaptainCasa

is a re-useable artefact. This means: you may

e.g. define a central “Address pane” and re-

use this composite component everywhere in

your application where address in/output is

required.

Composite components on the one hand

provide the screen layout (arrangement of

e.g. labels and fields), on the other hand they

define the interaction that is processed within

the screen.

Composite components can be “very

concrete” (e.g. address-pane) or “very

dynamic” (e.g. abstract grid view to render

an array of data).

Page templates

You can set up own page templates so that

the general structure of a page / part of a

page is following some template.

CaptainCasa

Enterprise

Client

Captain Casa Enterprise Client in a

nutshell

High level architecture

CaptainCasa Enterprise Client is following the

so called “Thin Client Architecture”:

The word “Thin Client” is not at all referring

to the graphical capabilities of the rendering

client! – But is referring to its role in the

architecture. The client is a pure rendering

engine which renders layout definitions that

are sent from the server side.

The rendering client does not know the

business semantics behind the layout (e.g. if

it represents material master date or a

purchase order). The client just sees the

layout which comes as XML definition and

renders it into corresponding controls.

On server side an interaction manager is the

one to send the layouts to the client and to

receive data changes and events from client

side.

The interaction manager is connecting the

screen processing to the application

interaction layer.

Client architecture

The client is a JavaScript program running as

single page application within the browser.

It uses a JavaScript control library which

comes from CaptainCasa itself. This control

library is based on the so-called RISC method.

This means that HTML is used on a very basic

level only – ensuring a unique browser

compatibility on the one and a great control

flexibility on the other hand.

Server architecture

The server architecture is internally using JSF

(Java Server Faces). JSF is the Java-EE

standard for server-side interaction

management – and is typically used in

classical HTML scenarios, in which there is a

constant sending of complete pages from the

server to the browser.

JSF is an open standard: within CaptainCasa

Enterprise Client it creates the XML-layout

description that is exchanged between the

rendering client program in the client and the

server.

Interface architecture

The interface between the client and the

server is an XML based protocol via http(s).

In both directions only changes of data are

exchanged. This is especially important for

sending layout definitions from the server to

the client. If there is no change in the layout

then there is only a minimum of data that is

sent from the server to the client.

Development process

The typical development process for creating

a screen or a part of a screen is:

You create the layout as XML definition by

using a WYSIWYG screen designer.

<t:rowdemobodypane rowdistance="5" >
 <t:row>
 <t:label
 text="Your Name" width="120" />
 <t:field id="g_ccpreview_4"
 text="#{d.HelloWorld.name}"
 width="200" />
 </t:row>
 <t:row>
 <t:coldistance width="120" />
 <t:button
actionListener="#{d.HelloWorld.onHello}"
 text="Hello!" />
 </t:row>
 <t:rowdistance height="50" />
 <t:row>
 <t:label text="Result"
 width="120" />
 <t:field enabled="false"
 text="#{d.HelloWorld.output}"
 width="100%" />
 </t:row>
</t:rowdemobodypane>

You create the code – supported by a code

generator:

public class HelloWorld
{
 String m_name;
 String m_output;

 public void setName(String value)
 { m_name = value; }
 public String getName()
 { return m_name; }

 public String getOutput()
 { return m_output; }

 public void onHello(ActionEvent ae)
 {
 if (m_name == null)

 m_output = "No name set.";
 else
 m_output = "Hello World,"
 +m_name+"!";
 }
}

That’s it! – The result can either be directly

started in the browser of can be re-used as

screen component in other screens.

Tools

CaptainCasa Enterprise Client includes tools

in the following areas:

• WYSIWYG screen designer

• Style manager

• Internationalization manager

• Code viewer, code generator

• Profiling tools

All Java application development is done in a

Java IDE of choice, for example:

• Eclipse

• IDEA

• NetBeans

All artifacts – including the screen definitions,

styles, … - are managed as files within a

project within the corresponding IDE. The IDE

is used for synchronizing with source code

repositories (SVN, GIT, …).

Technologies used

Client side:

• JavaScript

• (own) Control Library

• http(s) communication via “AJAX calls”

Server side:

• Java

• Java-EE server (starting with Tomcat,

Jetty, …)

CaptainCasa in a nutshell

CaptainCasa GmbH

CaptainCasa GmbH was founded in 2007.

CaptainCasa Enterprise Client was rolled out

since 2007, using a Java-Swing-Client as front-

end.

In 2013 a JavaFX version of the client was

published, expecting JavaFX to become the

new Java front-end standard…

After several approaches to cover the

rendering-complexity of typical business

application clients with existing web

frameworks the so-called RISC-method was

invented in 2017. This method was a break-

through for our client activities and first time

enabled us to provide an adequate level of

flexibility, performance and robustness within

the browser.

Throughout all the different client

technologies, CaptainCasa kept a strict

upwards-compatibility. Still screens created

in the year 2007 using a Java-Swing-client are

100% compatible to run in the web-client of

the current version.

CaptainCasa GmbH is located in Bammental,

close to Heidelberg, Germany.

CaptainCasa

Community

The users of CaptainCasa Enterprise Client

form an active community which is tied

together by a forum and by an annual physical

meeting in Heidelberg. In 2019 the 14th

Community Meeting was held.

Licensing

CaptainCasa Enterprise Client can be used for

free – without functional limits or usage

restrictions.

Commercial licenses are available and add:

• Source code access

• Investment security

• Service & support

Education

Just Java is enough to start developing with

CaptainCasa Enterprise Client.

CaptainCasa provides training-workshops with

a typical duration of 2 days. After the

workshop you will have a deep understanding

of CaptainCasa Enterprise Client and you will

have some concrete idea how to integrate the

interaction-part of your application with the

logic-part.

Services

CaptainCasa provides project development

services by tightly bound partners.

This includes attractive, approved possibilities

to outsource development activities to

Bulgaria: there is an established

infrastructure available to quickly and

efficiently start implementation projects.

CaptainCasa GmbH

Hindemithweg 13

D-69245 Bammental

http://www.CaptainCasa.com

info@CaptainCasa.com

http://www.captaincasa.com/
http://www.captaincasa.com/
mailto:info@CaptainCasa.com
mailto:info@CaptainCasa.com

