
Take the “RISC”!

 reduced instruction set client

A substantially different architecture for
industry-stable HTML Web UIs.

 browser-compatible by design
fast by design robust by design

zero installation – zero maintenance

The RISC-HTML method is a new architectural paradigm for
developing Web front-ends. It is designed to be used in the
context of demanding, operationally used business applications
with high expectations towards usability and long term
robustness.

The RISC-HTML method on the one hand responds to requirements
in the area of ergonomics, usage quality and performance and it
grants a great degree of freedom for designing application
dialogs. On the other hand this freedom comes with a new,
concept-driven quality in the area of browser-/device-
compatibility and in the area of supporting long lasting
application life cycles.

Browser user interfaces mean “zero installation” for the end user.
From software developer's perspective this “zero installation” is
directly associated with “endless maintenance” on his/her side.

The RISC method overcomes this association and first time
combines “zero installation” on end user side with “zero
maintenance” on software developer's side.

MOTIVATION

Developing front-ends with HTML/JavaScript traditionally means a
loss of control – especially when coming from native or Java-
based frontend environments:

• Browser-/Device compatibility: the end user is dictating the
browser to be used, your software is expected to properly run
on “any” browser – and especially is expected to run on all
future versions of browsers.

In case of compatibility problems you are the one to solve
them. The end user (especially within big companies) will
never update his/her browser just to make your application
work.

• Layout flexibility: you see a lot of really nice screens that are
built with HTML - but still HTML does not provide powerful
layout functions. Typical requirements like “I have several
variable vertical parts – and at same time several fix-sized
vertical parts” still mean some headache. The main layout
philosophy of HTML still is based on text flow – and not on
screen size.

• Complexity: HTML provides a rich set of elements, each
element providing a high number of parameters and each
element providing a high number of style attributes. Result:
the complexity of implementations is high. - Example: in many
scenarios it is nearly impossible to efficiently update the CSS
style sheet definition, without causing side effects that no one
is really aware of.

From a software developer's perspective this loss of control is
applied from outside – and as consequence is a permanent risk.
You may have invested quite some effort into your web frontend
implementation – and it can happen, that you have to re-invest
again into the frontend in short term future due to browser or
framework updates.

Traditional frameworks of course try to hide the browser
complexity and compatibility issues. But, due to the fact that
they are built on top of HTML, they are not able to substantially
overcome the problems and have a reached a high level of
complexity themselves. In case of bugs you as software developer
are responsible for solving the bug – and no one is interested if it
is a framework bug or some browser issue.

THE RISC-METHOD

The RISC method means a change of paradigms: the RISC method
does NOT intend to shrink-wrap HTML behind some abstracted API
and to equalize browsers behind this API. - But: the RISC method
goes back to the fundamentals by asking: which are the very basic
elements that a UI framework requires for building a rich set of
components?

So the RISC method identifies these “primitive elements” that a
UI technology has to provide, so that any “normal” control can be
built on top of them.

The primitive elements identified are:

• „Rectangles“: the UI technology needs to draw and manage
rectangular areas. Rectangles may have a defined background
and/or may show some text as content.

• „Input fields“: the UI technology needs to provide single line/
multi line text input controls.

From layout perspective the UI technology must only provide a
very basic way of arranging the primitive elements: it must be
able to absolutely position them by passing explicit coordinates
(x,y,width,height,(z)).

In short words: having rectangles and having text input fields, and
having the possibility to draw them at a dedicated position - that's
all you need for building all the nice components like buttons,
combo boxes, grids, dialogs, layout manager on top!

THE RISC WEB FRAMEWORK –
„REDUCED INSTRUCTION SET CLIENT“

The RISC method is now transferred to HTML. The “rectangle” is
represented by the DIV-element – the “input field” by the
INPUT/TEXTAREA element

The browser in general allows the absolute positioning of
elements. And: the browser provides a programming language
JavaScript which can be used to on the one hand to encapsulate
the layer of primitive elements and on the other hand to build
functional controls (button,…) on top.

http://www.CaptainCasa.com

 CaptainCasa Enterprise Client RISC
 The „RISC.HTML method“ (reduced instruction set client): robust, compatible, fast Web UIs.

So, within the RISC method the browser is only used in a very thin
and reduced way. The complete client side architecture looks as
follows:

RISC Nucleus-Library
(JavaScript, 1000 lines of code)

DIV, INPUT

Functional Component
Library (JavaScript)

Field, Button,
Checkbox, ...

Layout Manager
Container

Components

Grid, Tree, ...

Client side Program

On the bottom layer, the two primitive elements are encapsulated
by some “Nucleus Library”. This library provides an API that
allows some access to the primitive elements.

On top of this nucleus library there are the control
implementations (“functional component library”) - including
simple controls (button, field, combo box, …), complex grid and
tree controls, layout container controls and dialog controls.

The browser's role now is reduced to executing the rendering – by
drawing DIV and INPUT elements. The position of the elements is
not defined by the browser – but is defined on functional control
layer.

A surprising “side effect” of applying the RISC method to the
browser is, that the result is very fast. Browsers seem to “love”
rendering of rectangular areas by shifting most of the rendering
work to the graphics hardware. - And JavaScript, due to JIT
compilation, is a quite fast runtime in the meantime.

SUBSTANTIAL SOLUTION AND
GAIN OF CONTROL

The RISC method is a substantial, architecture-driven solution for
the problems identified within the introduction of this document:

• Browser-/Device compatibility: the browser is only used in a
very limited way: absolute positioning of DIV and INPUT
components is all the browser has to do. These functions are
such basic, that any browser supports them. In addition there
is a “Nucleus Library” of very limited size that encapsulates
these primitive elements and functions. In case of problems
with a browser, the problems have to be solved on level of the
“Nucleus Library” - all the functional components on top are
not affected.
In short words: the effort you have to spend for browser
compatibility issues is drastically reduced!

• Layout flexibility: Layout management is part of the
functional components – they decide where to exactly draw
and arrange what. Layout management is NOT done by
corresponding HTML elements (TABLE,...) with known
limitations.

• Complexity: the complexity is not somehow distributed onto
various levels (HTML, framework, CSS, …) but is clearly
managed on functional component level.

The RISC method ensures a regain of control – both from short
term and from long term point of view. It's not the outside
browsers that dictates the rhythm of your frontend development
anymore – control is back in your hands!

CAPTAINCASA ENTERPRISE CLIENT RISC

CaptainCasa Enterprise Client is a rich client framework for
developing and running user interfaces for server-based business
and enterprise applications.

SERVER CENTRIC UI

CaptainCasa Enterprise Client follows the so called principle of
server-centric UI-processing.

RISC based
Browser Client

Application Interaction Processing

Business Logic

„Server Side UI“

Layout
(XML) Data, Events

Br
ow

se
r

Se
rv

er

The development and interaction processing of dialogs is located
on server side. Result: the server side interaction has direct
access to the server side business logic. - The front-end client is a
generic rendering engine, receiving form descriptions (XML) from
the server side, rendering them and passing events and data
updates back to the server side.

Both the communication of layouts from the server to the client
and the communication of user input and events from the client
to the server is optimized for performance and data volume. Only
changes are transferred into both directions – so that round-trips
between client server are no heavy-weight but light-weight
round-trips.

RISC BASED BROWSER CLIENT

The client part of CaptainCasa Enterprise Client is a pure HTML
client which is built using the RISC method. The client provides a
large number of functional components:

The HTML-RISC based library contains: classical components

(button, field, combo box, …), flexible grids (up to Pivot
processing), flexible trees, various layout containers, adaptive
layout managers, file upload/download components – and many
more.

DEVELOPMENT PROCESS WITH CAPTAINCASA
ENTEPRISE CLIENT

The development of dialogs is done on server side: the layout is
either defined as XML file within a comfortable wysiwyg-editor –
or is dynamically created based on application concepts.

Each dialog is represented by a corresponding Java bean
implementation that represents the server side view model.

The tool environment of CaptainCasa Enterprise Client was
developed using CaptainCasa Enterprise Client itself – and as
result is 100% running within the browser. It serves as nice
example for the speed and interaction quality of the RISC-HTML
architecture.

CAPTAINCASA COMMUNITY

CaptainCasa is an open community of independent software
vendors from Germany, Switzerland, Austria, the Netherlands and
Belgium.

The community was founded in 2007 – those days using a Java
Swing based client, later on switching to JavaFX, and now
switching to RISC-HTML. Due to the server side architecture of
CaptainCasa Enterprise Client the protocol between the generic
rendering client and the server side processing was kept stable. –
The transfer from e.g. Java Swing client to RISC-HTML client is
very simple as consequence.

The community is internally communicating through an online
forum and meets one time per year for a Community Meeting in
Heidelberg, Germany.

CaptainCasa GmbH is the legal entity behind the community and
drives software development, services and sales of CaptainCasa
Enterprise Client.

AVAILABILITY

CaptainCasa Enterprise Client RISC was released for public usage
on 07th of July 2016 – after going through a community beta

phase, in which community members transferred their application
from Java Swing/ JavaFX based client processing to RISC-HTML
based client processing.

Finally... - one last issue:

WHAT'S THE BACKGROUND FOR THE NAME
„RISC-HTML“?

The name “RISC-HTML method” is a reminiscence to the “CISC”
vs. “RISC” processor discussion in the 80s/90s. There are a lot of
similarities between this discussion about hardware and the
discussion about problems in the browser area.

When looking back on processor architectures, then in the
beginning there was the attitude to add more and more
instructions to the processor's instruction set. The thinking was
based on the paradigm: every command running inside the
silicium of the processor is a “good command”. The result: so
called “CISC” processors (complex instruction set).

Of course each new command increased the complexity of the
processor design. And: complex commands required more
processing time than simple logical operations – and slowed down
the processor. Result: a shift of paradigm happened:

So called “RISC” processors (reduced instruction set) only
provided very basic commands anymore – resulting in a much
cleaner and simpler design of the processor. Complex operations
were not executed by the processor itself but were part of the
program that runs through the processor. In other words:
algorithmic complexity was taken out of the hardware and was
shifted into the software.

The similarities between the processor discussion and the browser
discussion are obvious: the browser started as text rendering
engine and gained more and more elements, attributes, CSS
parameters – now having reached a huge level of complexity. The
RISC-HTML method takes the complexity out of the inner browser
processing and shifts it into a dynamic, JavaScript based
processing in front of the core browser.

CaptainCasa GmbH
Hindemithweg 13

D- 69245 Bammental
 http://www.CaptainCasa.com

info@CaptainCasa.com

	MOTIVATION
	THE RISC-METHOD
	THE RISC WEB FRAMEWORK – „REDUCED INSTRUCTION SET CLIENT“
	SUBSTANTIAL SOLUTION AND GAIN OF CONTROL
	CAPTAINCASA ENTERPRISE CLIENT RISC
	SERVER CENTRIC UI
	RISC BASED BROWSER CLIENT
	DEVELOPMENT PROCESS WITH CAPTAINCASA ENTEPRISE CLIENT

	CAPTAINCASA COMMUNITY
	AVAILABILITY
	WHAT'S THE BACKGROUND FOR THE NAME „RISC-HTML“?

